MEASUREMENT OF SOME RARE EARTH GAMMA RAYS USING A TWO METER BENT CPYSTAL SPECTROGRAPH

THOMAS JOSEPII WALTERS

JAMES HAMILTON WEAER

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

MEASUREMENT OF SOME RARE EARTH GAMMA RAYS
 USING A TWO METER BENT CRYSTAL SPECTROGRAPH

```
8854
by
Thomas Joseph Walters
B.S., U. S. Naval Academy
(1949)
```

Nav.E., Massachusetts Institute of Technology
(1956)
and
James Hamilton Webber
B.S., U. S. Naval Academy
(1949)
S.M., Massachusetts Institute of Technology
(1955)

Nav.E., Massachusetts Institute of Technology
(1955)

SUBMITIED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

at the

MASSACHUSETTS INSTI TUTE OF TECHNOLOGY
July 1959

Signature of Authors

Certified by

Accepted by
nips Archive
Thicsif
1959
wafers
waiter, T.

ACKNOWLEDGKMENTS

In concluding this thesis, it is a pleasure to express out gratitude to those people who have materially aided the furtherance of the project.

Professors Norman C. Rasmussen and Hans Mark both gave their time froely. Their advice and guidance were of constant assistanco.

We are eapeoially indebted to Dr. John Garfield of Brookhavon National Laboratory for the processing of the nuclear amulsions. Members of the M.I.T. Heactor Starf were of assistance in the source irradiation and in the development of the source handing equipment and procedures.

MEASUREMENT OF SOME RARE EARTH GAMMA RAYS

 USING A TWO METER BEINT CKYSTAL SPECTROGRAFH

 USING A TWO METER BEINT CKYSTAL SPECTROGRAFH}

by
Thomas Josoph Walters
and
James Hamilton Webber

Submitted to the Dopartment of Nuclear kingineering on July 27, 1959 in partial fulfillment of the requirements for the degree of Master of Science in Nuclear Engineering.

ABSTRACT

The assembly, alignment and initial operation of a two meter bent crystal spectrograph of the Cauchois type is described. Treatment is given to the auxiliary oquipment necessary for handling and exposing radioactive sources of several curies strongth. The research reactor at the Massachusetts Institute of Technology has been used to produce radioactive sources of several of the oven Z rare earth elements between $Z=60$ and $Z=70$. These elements decay by beta emission or electron capture to excited states in odd 2 isotopes. By exposing these sources in the spectrograph, photographic spectra were obtained of the more intense gamm rays emitted. The plates were calibrated with x-rays and gamma rays of known wavelengths. Energies of 17 gamma rays from 64 kev to 400 kev were determined with a precision of about one part in 2000 .

Thesis Supervisor: N. C. Rasmussen
Titlo: Assistant Professor of Nuclear Engineering

TABLE OF CONTENTS

Letter of Transmittal
Acknowledgements
Abstract
Table of Contents
Section I - Introduction 1
Section II - Theory of the Bent Crystal Spectrograph
A. Bragg's Law 3
B. Geometric Optics of the Curved Crystal
Focusing Spectrograph 5
C. Exact and Approximate Geometries 7
D. Source-Detector Arrangement 12
E. Instrument Efficiency Considerations 15
Section III - Description of Experimental Apparatus
A. Two Meter Bent Crystal Spectrograph 20
B. Quartz Crystal and Crystal Holder 23
C. Source Handling and Storage wiquipment 25
D. Source Materials and Containers 32
E. Source Irradiation Facility 37
Section IV - Experimental Apparatus
A. Optical Alignment of the Spectrograph 39
B. Hartmann Tests 46
C. Source Positioning and Shielding 55
D. Source Irradiation and Handling Procedures 62
E. Detection Procedures 68
Section V - Data Reduction and Calculational Methods
A. Messurement of Line Hositions 71

TABLE OF CONTeNTS

Letter of Transmittal
Acknowledgements
Abstract
Table of Contents
Soction I - Introduction 1
Section II - Theory of the Bent Crystal Spectrograph
A. Bragg's Law 3
B. Geometric Optics of the Curved Crystal
Focusing Spectrograph 5
C. Exact and Approximate Geometries 7
D. Source-Detector Arrangement 12
E. Instrument $E f f i c i e n c y ~ C o n s i d e r a t i o n s ~$ 15
Section III - Description of Experimental Apparatus
A. Two Meter Bent Crystal Spectrograph 20
B. Quartz Crystal and Crystal Holder 23
C. Source Handiling and Storage tiquipment 25
D. Source Materials and Containers 32
E. Source Irradiation Facility 37
Soction IV - Exporimental Apparatus
A. Optical Alignment of the Spectrograph 39
B. Hartmann Tests 46
C. Source Positioning and Shiolding 55
D. Source Irradiation and Handling Procedures 62
E. Detection Procedures 68
Section V - Data Reduction and Calculational Methods
A. Measurement of Line Kositions 71
B. Calculation of Gamma Ray Energies 73
C. Determination of Standard Deviation 77
Section VI - Results 82
Section VII - Conclusions and Recommendations
A. Conclusions 86
B. Recommendations 86
Section VIII - Appendix
A. Sample Calculations 88
B. Wavelengths of Calibration Lines 95
C. Bibliography 96

SECTION I - INTRODUCTION

The recent theery of nuclear structure developed by Bohr and Mottleson (1, 2) makes predictions of the low lying onergy levels of the nucleus. In heavy elements (beginning around $Z=60$) the first fow energy lovels belong to the rotational band of the ground state. Provious moasurements of retational spectra have revealed small deviations from the rotational level sequence predicted by first order theory. The presence of certain higher order terms in the equations of the collective model appears to explain these deviations. It is highly desirable that energy levels of additional isotopes be measured so that the adequacy of the higher order terms of the theory can be verified. The deviation of these terms from first order theory is so small that this verification requires gamma ray energy measurements of high precision.

It is the purpose of this thesis to partially satisfy this need by application of a bent crystal diffraction technique by which gamma ray energies may be measured with a precision of up to one part in 3000. The precision decreases with increasing energy.

Measurements of this type have been previously made, starting in 1947, by DuMond (15) at California Institute of Technology with a focusing curved crystal gama ray spectrometer. More recently, a group at the Radiation Laboratory, University of California, Livermore, Califormia, (7, 8, 9) have used a slightly different geometry in conjunction with the A-48 accelerator to measure the gamma rays emitted in electric excitation processes.

This thesis describes the assombly, calibration and initial operation of a two meter focusing spectrograph of the Cauchois type. The experimental work was devoted to the measurement of gamma ray onergies only, no attempt boing made te determine the relative intensities of the radiations. Since the officiency of the bent crystal spectrograph is a strong function of gamma ray onergy, considerably more calibration work will be required before absolute intensity measurements are feasible.

Gamma ray onergios of fivo odd Z rare oarth eloments, from $Z=61$ to $Z=71$ wero moasured. These gamma rays wore omitted following beta decay or electron capture of radieactive oven \angle isotopes. Radioactive sources of soveral curies strongth wore produced in the research reactor at the Massachusetts Institute of Technology (24).

A. BRAGG'S LAW

The operation of any crystal spectrometer or spectrograph is dependent on the diffraction of electromagnetic waves by the regularly spaced atoms in a crystal. Historically, the discovery of the resolving property of crystals grew from a suggestion by Laue. He suggested that a crystal, with its regular, three-dimensional array of atoms, might behave toward a beam of x-rays in somewhat the same way as does a ruled diffraction grating toward a beam of ordinary light. Subsequent experimental work (17) verified this pestulate。

A simple and convenient way of looking at the process of diffraction by a crystal grating was proposed by Bragg (3) Reference(22)contains a lucid explanation of Bragg's Law for x-ray diffraction and may be consulted for a fuller treatment than that which follows.

If plane monochromatic electromagnetic waves are incident on the atoms in a crystal, a wavelet of scattered radiation will spread out from each atom in all directions.

Figure 1

In Figure $l_{\text {, }}$ the two horizontal lines represent two successive atomic planes in a crystal, where d is the crystal spacing for these particular planes, θ is the angle of incidence of the electromagnetic radiation on the planes and θ^{l} the angle of reflection. The wavelets reflected from each of these parallel planes will combines in general, in different phases and so will destroy each other by interference. However, there are certain conditions as to wavelength and angle of incidence where the waves from different planes will combine in the same phase and reinforce each other. These necessary conditions comprise Bragg's Law.

Constructive interference will occur if path $10_{1} A_{9}$ taken by waves scattered at O_{1}, differs by an integral number of wave lengths from path ${10_{2}} B_{9}$ taken by waves scattered at O_{2}. Assuming $\theta=\theta^{l}$, right triangles $O A O_{1}$ and $O C O_{1}$ are congruent, so $O_{1} A=O_{1} C$. Therefore, the condition for constructive interference becomes $O_{2} C+O_{2} B=n \lambda$ 。 Since $O_{2} C=d \sin \theta$ and $O_{2} B=d \sin \theta^{1}$, this may be written $2 d \sin \theta=n \lambda$ 。

The full condition that there be a reflected beam is
therefore,

$$
\theta=\theta^{l}
$$

$$
n \lambda=2 d \sin \theta
$$

where: n is an integer, called the order of reflection
d is the spacing betwoen atom planes
λ is the wavelength of radiation
In the present spectrograph, only first order reflections are used, so n may be taken as unity.
B. GEOMETRIC OPTICS OF THE CURVED CRYSTAL FOCUSING SPECTROGRAPH

Following the discoveries of Lave and Bragg in 1912, eighteon years passed before a practical scheme for a curved crystal, focusing spectrometer was published by DuMond and Kirkpatrick.(15) This paper, which states the principles of exact focusing with curved crystals was closely followed by papers $(4,5,19,20)$ describing the different approximate and exact realizations of these principles. The current literature contains several good descriptions of the curved crystal focusing spectrometer, references (11), (12), and (13) being examples.

The curved crystal spectrometer may be classified into two general types: the reflection case and the transmission case. The first curved crystal spectrometer of the reflection type was built by H. H. Johann (19) and the first transmission type, which is of the type used in this thesis, was built by Y. Cauchois (4) Figure 2, taken from reference (11), illustrates the exact transmission case.

A crystal is shown whose reflecting boundary coincides with part of the circle of center 0 . The short atomic reflecting planes traversing the thin crystal shoet all point to a common Junction at C, called the beta point. In this type there is one real focus I and one virtual focus S.

To illustrate the focusing properties of this instrument, imagine an extended radioactive source at position A in Figure 2. Electromagnetic radiation omanating from this source in the form of x-rays or gamma rays of wave length $\lambda \hat{i}$ strikes

Exact Transmission Spectrograph Figure 2
one of the atomic reflecting planes in the crystal at angle θi. If λ_{1} and θ_{1} satisfy the Bragg condition, $\lambda_{1}=2 d \sin \theta_{1}$, reflection will take place, the reflected wave leaving the atomic plane at angle $\theta_{1}{ }^{\prime}$. Now, picture another quanta of electromagnetic radiation of the same wave length λ_{1}, coming from another part of the extended source. If this quanta strikes one of the atomic planes of the crystal at angle θ_{1} it will similarly be reflected at angle θ_{1}^{\prime}. . Since both atomic planes point toward point C_{1}, it can be seon that the reflected rays will be focused at point I_{1}, both angles θ_{1} being subtended by the same arc $\mathrm{I}_{1} \mathrm{C}_{1}$.

Radiation from the source of wave length λ_{2} will be reflected by the crystal, leaving at angle θ_{2}, in accordance with the Bragg condition. Focusing will again take place, but since θ_{2} will differ from θ_{1}, the focal point will be at a now location, I_{2}. It is from the measurement of the distance $I_{1} I_{2}$, that the relative wave length differences of two x or ganma rays may be accurately determined. These are easily converted to energy differences. The present method of energy determination reduces to a straightforward measurement of distance from reference lines of known onergies.

C. EXACT AND APPROXIMATE GEOMETRIES

The oxact type of roflecting spoctrometor has been constructed by suitably profiling the crystal lamina (in its unstressed state) to the required radius of curvature, twice the radius of the focal circle, and then bending it so that
the boundaries conform to the focal circle. In this case, the atomic reflecting planes in the bent crystal will then have a radius of curvature of just twice that of the focal circle.(20) Y. Cauchois realized that the position of the boundary of the crystal was considorably less important than the direction of the atomic planes. The Cauchois approximate type of transmission spectrograph makes use of this observation to avoid the difficult profiling of the boundary surface.

The Cauchois approximate type of spectrograph, of which the MIT two meter instrument is an example, requires no profiling of the crystal. An unstressed quartz crystal, whose (310) planes are perpendicuiar to its optically flat surfaces, is bent to a radius equal to the diameter of the focal circle. Thus, the reflecting planes all point to the beta point, but the crystal itself does not conform to the focal circle.

The chief geometrical aberration in the Cauchois approximato transmission ty po spoctrograph comes from the fact that the neutral axis of the curved lamina doviates at its extromitios from exact coincidence with the focal circle。 Figure 3 shows the geometry of the relative line broadening, which results from this aberration. Reference gives the result

$$
\frac{\Delta \lambda}{\lambda} \cong \frac{\cos \theta(1-\cos \alpha)}{\cos (\alpha+\theta)}
$$

where θ is the Bragg angle
α is the halfeangle subtended by the crystal.
Clearly for small Bragg angles and small $\alpha, \frac{\Delta \lambda}{\lambda}$ rapidly becomes negligiblo.

Cauchois Approximate Iranamission Spoctrograph

Figur 3
\checkmark

In the MIT two meter spectrograph, this fractional aberration is of the order of 10^{∞}.

An interesting result of the type of reflection taking place in the transmission type curved crystal spectrograph is that there is no correction whatever to the Bragg angle for the refractive index of the electromagnetic rays in the crystal, provided that the internal planes of reflection are normal to the crystal slab This is not true of the reflection type spectrograph. Referring to Figure 4 we see that the ratio of the wave lengths outside and, inside the crystalline medium, λ_{1} and λ_{2} o respectively, will be equal to μ, the refractive index of the crystal:

$$
\frac{\lambda_{1}}{\lambda_{2}}=\mu
$$

The ratio of the sines of the angles, θ_{1} and θ_{2}, of incidence and refraction at both entrance and exit boundaries of the crystal will

Refraction of. Rays in Crystal
Figure 4
alse be equal te

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\mu
$$

If the reflecting planes are normal to the boundary surface, the Bragg equation inside the crystal is

$$
n \lambda_{2} \approx 2 d \quad \sin \theta_{2}
$$

Substitution from the previous relations quickly leads to the conclusion that

$$
n \lambda_{1}=2 d \quad \sin \theta_{1}
$$

This rolation shows that the angl of reflection is indeperdont -f the refractive index of the crystal.

It has also boon shown by Caucheis that, in the transmission case, there is focusing offect through the thickness of the curved crystal shoet as well as frem side te side. When the crystal lamina is curved, the strain near the - utside (convox) surface of the plate results in a larger grating spacing than the strain free value at the neutral axis. The larger grating spacing results in a smaller Bragg angle at the outside. The oppesite effect occurs fer reflection by regions near the inner (concave) surface. Dumend (11) states that this results in exactly the required convergence of all the reflected beams over the ontire thickness of the slab to give perfoct fecusing from front to back. This leads to the conclusion that in the transmission spectrograph it is the noutral axis of the crystalline slab which must be in contact with the focal circle。 This observation is used during the optical alignment to cheese a point on the crystal as a reference for the fecal circle.

Two possible geometries for use with the transmission type, curved crystal spoctromotor are shown in Figure 5 .

Schome I

Scheme II
Figure 5

In scheme I, we place an extended source at A, measuring the various x and gamma ray energies by the displacemont of the focused lines, along the focal circle. Detection in this case is feasible by either a photographic emulsion placed along the focal circle or a counter behind a suitable slit arrangement. Such a photographic spectrograph was first used by Cauchois.

DuMond (11) has extensively developed the alternate scheme, wherein a very concentrated source is placed at the focus, R, and the intensity, measured in a GM or scintillation counter, is plotted as a function of the position of the source R on the focal circle.

For a source of a given strength, use of scheme II pormits the attainment of somewhat higher monochromatic intensities. This may be seen from the following considerations. For a very thin concentrated source at R_{9} overy atom can radiate the specified wavelength into a solid angle subtended by the entire working aperture of the curved crystal. In scheme I_{9} however, for an emitted gamma ray line of a given wave length, each nucleus at some point in the extended source placed at A_{9} can only make use of a very small solid angle subtended by a very thin portion of the curved crystal where the incident radiation strikes the reflecting planes at just the right Bragg angle. A study with the two crystal spectrometor using unstressed flat quartz plates has established that, for the (3:20) planes of quartz, the selective reflection of given wave length is restricted to an angular region of the ordor of
only a fow seconds of $\operatorname{arc}(25)$. This is to be compared to a horizontal angular opening of approximately 1.5 degrees in scheme II.

The above arguments in faver of scheme II, as advanced by DuMond (17), are largely neutralized when considoration is given to the geometrical configuration of the radioactive source. In scheme II adequate resolution of gamma ray onergies requires that quite thin sources be used. DuMond (13) has used rectangular strips of motal, such as tantalum or gold of dimensions 30 mm X 5 mm X . 05 mm , the thin dimension being that vertically along the focal circle. In the arrangement of the MIT spectrograph (scheme I), however, source sizes of one inch diameter cylinders are easily used. Therefore, advantage may be taken of the extended source position in the scheme I geometry to use considerably stronger sources, gaining back much of the intensity lost to the smaller angular acceptance angles around the correct Bragg anglo.

The prime advantage of the scheme I geometry is its absence of moving parts. Figure (7) is a photograph of the MIT two meter spectrograph. The simplicity of the arrangement is apparent. The lines are all formed simultaneously over a considerable segment of the spectrum in a single expesure, ne point by point exploration of the spectrum being required, as in the schome II geometry.

Operation of an instrument of the scheme II geometry requires in principle, that the source be moved along the focal circle, while radiation intensities are measured continuously
by the counter. Source positions corresponding to peaks of moasured intensity can be converted to gamma ray onergies through the Bragg relation. In practice, to avoid the necessity of moving the heavy collimator and the still more heavily shielded garma ray dotector behind the collimator, the focal circle and source are rotated, while the detector is held fixed in space. Linkages are required to rotate the crystal in order to maintain the correct alignment and to accurately determine the distances and angles involved in the rotation. Flexures of the mechanism require quițo complex alignment and compensating devices. A good description of the careful attention to detail required for such an instrument is given in reference (13).

E. INSTRUMENT EFFICIENCY CONSIDERATIONS

An important consideration in estimating the exposure times required for gamma ray measurement is the officiency of the spectrograph as a function of quantum energy. The officiency may be defined as the ratio of the number of gamma quanta absorbed in a particular line on the nuclear emulsion to the number of quanta of that energy emitted by the source in all directions. (9) This efficiency is determined by three factors: (1) The acceptance angle around the Bragg angle or the integrated roflection coefficient, R_{θ}, within which the quartz lattice will accept and reflect radiation from an atom in the source. The distance of the source from the crystal and film helder. (3) The efficiency of the detector placed on the focal circle of the spoctrograph.

Lind, West and DuMond(2Jhave investigated the
roflection properties of the (310) planes of quartz over the wave length range 500 to 9 x.u. for the transmission case. They have experimentally determined the value of the integrated roflection coefficient, R. This parameter is the equivalent angular range about the Bragg angles over which 100 per cent of the photons are reflected in accordance with the Bragg condition R_{θ} ossentially determines the usable solid angle into which an emitting atom in the source can radiate in order to be selectively reflected by the crystal planes. The variation of R_{6} with energy has been dorived from the data of reference (21) and is presented in (9) for a $2 m$ thick crystal as

$$
R_{\theta}=\frac{3.5 \times 10^{-2}}{E_{\gamma}}
$$

where E_{γ} is the quantum onergy in kilovolts, and $R \theta$ is given in radians.

In Figure 6, we have selected an atom in the source. d is the distance from source to crystal, D is the distance from crystal to film (closely 200 cm 。 in the present case), and h is the effective height of the crystal per 1 cm line height on the film. From the geomotry $h: \frac{d}{d+D}$. The solid anglo within which all quanta leaving the source will be reflected onto the film is givon by

$$
\Omega=\frac{R_{\theta} d h}{4 \pi d^{2}}=\frac{R_{\theta}}{4 \pi(D \& d)}
$$

Substituting the empirical relation for $R \theta^{\circ}$ we obtain a geometric efficiency, $/ g^{\circ}$ which is the ratio of photons

Figure 6
Efficiency m Nomenclature
reaching a 1 cm . line in the detecter to the total number of photons omitted by the source.

$$
\eta_{g}=\frac{3.5 \times 10^{-2}}{4 \pi(D+d) E_{\gamma}}{ }^{2}
$$

For the geometries used in this thesis, the film hoight was $2.54 \mathrm{~cm} ., D \cong 200 \mathrm{~cm}$, , and $d \cong 100 \mathrm{~cm}$. The geometric officioncy becemes

$$
\eta_{s} \cong \frac{2.35 \times 10^{-5}}{E 2}
$$

The geometric officioncy must be multiplied by the detecter efficiency te obtain the overall instrument officioncy. It is necessary that a high officiency detector be ompleyed if reasonable expesure times are to be attainod. Twe officient dotection devices are pessible, scintillation counter bohind a vory narrow slit arrangement, or thick nuclear emulsion. The latter type of detector had beon used previeusly at Livermere (7), and has the advantage of expesing all lines simultaneously instead of requiring separate line measurements as with the slit arrangemont. For these reasons, the work doscribod in this thesis was carriod out using Ilford G-5 omulsions. These amulsions were of a thickness of 600 microns and wore mounted on glass plates. The officioncy of 600 micren nuclear emulsion is of the order of 200 times that of ne screon x-ray film, which was usod in the Hartmann tests with an x-ray machine。

Reforence (21) gives an estimate of the officiency function of the omulsion in the region of a fow hundred kilevelts. This estimate, based on the data on omulsions given
by Goldschmidt-Clomont (18) and the gamma ray absorption cross section measuroments of Davisson and Evans(10) is:

$$
E=.06\left[\frac{2.56 \times 10^{6}}{E_{\gamma}^{3}} \quad \& \quad \frac{1}{E_{\gamma}} 1 / 3\right]
$$

The total efficiency of the spectregraph is then:

$$
\eta_{T}=\epsilon \eta_{8}=\frac{1.41 \times 10^{\infty 6}}{E_{\gamma}{ }^{2}}\left[\frac{2.56 \times 10^{6}}{E_{\gamma}{ }^{3}}+\frac{1}{E_{\gamma}} 1 / 3\right]
$$

At a quantum energy of 100 kev the total efficiency is 3.9 X 10^{-10} while at 300 kev it is $3,9 \times 10^{\infty 12}$, which is a decrease by a factor of 100 .

The above efficiency analysis still provides ne measure - f the length of exposure required unless it is known how many phetons are required to produce a measurable line on a nuclear omulsion. Reference (21) quotes a rule of thumb of one curie hour of a specific enorgy transition to produce a line in the neighborheed of 100 kev . Using the derived energy function fer efficiency, we would expect 100 curie hours to be required fer a Ine at 300 kev. It thus became apparent early in the experimental work that sources of several curies strength would be required if expesures were to be obtained in reasonable times. Wherever possible, exposures in excess of 50 curies hours were obtained. In one case, that of Ytterbium, an exposure of appreximately 200 curies hours was made。 It was gratifying to discover that the 396 Kev gamma ray line was of sufficient strength te be measured on this plate.

SECTION III - DESCRIPTION OF EXPERIMENTAL APPARATUS

A. TWO METER BENT CFYSTAL SPECTROGRAPH

Figure (7) is a photegraph of the assembled spectregraph with a source in position for exposure. Radioactive sources are placed in the shielded expesure container at the right and a glass backed nuclear emulsion is placed in the film holder at the left. The crystal may be seon to the right of the center. This spectregraph empleys a bent quartz crystal 2 mm thick by $3 \frac{7}{2}^{10}$ long by 3^{19} wide。 The crystal has been cut se that the (310) planes are perpendicular to the large surfaces of the crystal. Figure (8) shows the crystal holder with the crystal in it. Section B discusses the crystal and holder in detail. The authors are indebted to Prefessor H. Mark of MoI.T. for bending the crystal and for supplying the crystal and crystal holder from previous work at the Radiation Laboratory, Livermere, California. Crystais are easily broken during the bending precese but once securely in the crystal holder no further adjustment is necessary.

The lead bricks between the crystal and film holder form a crossover point shield. This shiold passes the diffracted rays and blocks out the direct rays from the film。 A detailed description of the cross over point is given in Section IV, Part C. The four inch thick lead wall areund the source expesure container forms a major part of the biological shield.

Figure (9) shows the film holder of the spectregraph. This film holder is machined to a meter radius. It is capable of holding film which is 14 inches leng by $2 \frac{1}{2}$ inches wide. The

Figure 7 - M.I.T. two metor bent crystal spectrograph, Cauchois type.
maximum useful area the film is l2 inches long by 1 inch wido。 Basic suppert for the spoctregraph was provided by two drafting tables. Three piscos of woed planed parallel and $5 \frac{1}{4}{ }^{\prime \prime}$ X $4^{\prime \prime}$ in cross soction support the frame on top of tho tables. The height of the frame above the table was determined se that two standard $2^{11} X 4^{11} X 8^{\prime \prime}$ lead bricks could bo usod for shielding under the source. This arrengement also placed the film holder and source, expesure rea at cenveient height above the fleor. The assembled spectrograph wolghs about three hundred pounds. The lead neoded to shield the source sdds about 1000 lbs. These experiments were performed in wooden frame building where floor loading had to be considered. Hence, large aluminum plates were placed under the legs of the drafting tables to sproad the load over a larger fileor area.

B. QUARTZ CRYSTAL AND CRYSTAL HOLDER

The quartz crystal is clamped between two hardened blecks of stainless steel, shown in Figure (8). The material is a heat treatable stainless stell having the composition Cr 13.5%, C 0.35%, $\mathrm{Mn} 0.40 \%$, Si 0.50%, selected especially for its thermal expansion ceofficient, which matches clesely that of quartz in the direction transverse te the optical axis. It is -btainable from Firth-Sterling or Allegheny Ludlum Steel Companies (13). One of the steel blocks has a convex and the -ther a concave prefile te bend the quartz crystal to the required radius of two meters. Only the convex block actually dotermines the curvature of the quartz since a rubber gasket is placed betwoen the concave steel surface and the quartz plate. The pressure is not applied directly by the screws which pull the two plates tegether. Instead compression springs are used between the scrows and the blecks te lessen the danger of tee great a pressure which might break the crystal.

The oxtromely important techniques involvod in profiling and lapping of the stainless steol blocks in the crystal holder are described in reference (16). The quartz slab is prepared from perfect specimens of monocrystalline material known to be completely froe from oithor optical or electrical twinning. Slabs are cut at the correct angle, etchod, ground, lapped and polishod to optical flatness. Reforence (13) contains a summary of this precedure.

C. SOURCE HANDLING AND STORAGE ERUIMMENT

1. General

Experimental work for this thesis was conducted in Reom

Figure 8 - Crystal hobdor containing quartz crystal. Left: Front viow. Right: Plan viow. Note curvature of crystal in plan viow.

Figure 9 - Film holdor. Left: Front view. Note hoight adjustmont screws and load markers. Right: Plan viow. Note curvature of holdor and approximate onorgy scalo.

320 of Building NW-12, adjacent to the M.I.T. Reactor, 138 Albany Street, Cambridge, Massachusetts. This area of Building NW-12 is restricted to the use of sealed sources only. Access t- Room 320 from the reactor proper requires transit through general usage areas not restricted to personnel normally working with radieactive material. To provide persennel protection and 2lse to insure minimum interference to other experiments, a requirement of $1 \mathrm{mr} / \mathrm{hr}$ at l ft from the transport container was established as the maximum permissable dese rate during source transportation.

Stringent shielding requirements areund the radieactive source are impesed by the location of Room 320. It is directly -ver a classroom which is in use several hours a day during the acadomic year. The area on the third floor limediately surrounding Room 320 is a non-restrictive clean area. This lecation led te the requirement of a dese rate at the boundaries of the reom not to exceed . $25 \mathrm{mr} / \mathrm{hr}$.

Since it was determined early in the conduct of the thesis that source strongths of several curies would be needed, considerable care was devoted to satisfying of the above dose rate requirements. A significant portion of the time invelved in the thosis was spent in dosigning, fabricating and procuring the source expesure, source handing, and transperting equipment. The design and selection of equipment was made according to the following principles: Each dovice must accomplish its purpose and yet be
a) simple te operate and reliable in use
b) simple te construct, te conserve time and money.
c) easy to maintain.

Fire and security requirments impesed the cendition of having all sources in locked steel containers whenever the reom was unattended.
2. Transpertation Containers

Shielding calculations were based on assuming a point source giving off gamma rays of 1.33 Mev with one such gamma for each disintegration with a maximum source strength of 2 curies. This combination of source strength and gamme energy was determined to be the most demanding of the shield for this series of experiments. Allowance for a build up factor was made by taking $B=1+\mu x$ where μ is the linear attenuation coefficient and x is shield thickess. This is a conservative precedure and was se intended. These appreximate shielding calculations determined that about 8 inches of lead would be the maximum thickess shield needed to satisfy the $1 \mathrm{mr} / \mathrm{hr}$ at one foot requirement. Floer leading and the lack of overhead weight handling equipment on the third floor were limiting factors in dotermining total container weight.

Figure (10) shows the finished product. Standard $2^{\prime \prime}$ X $4^{\prime \prime}$ X $8^{\prime \prime}$ lead bricks, staggered te reduce leakage at the brick jeints, were wedged in place in a steel box. This bex was mounted on a, commercially available, 3000 lb, capacity hand truck. The shielded velume is $2^{\prime \prime}$ doep by $4^{\prime \prime}$ square. A removable sheet metal tray allows easy decontamination of the shielded velume. Te reduce weight, the bricks at the cerners farthest

Figure 10 - Source transportation dolly. Shielded volume, $2^{\prime \prime}$ doep by $4^{\prime \prime}$ square. Shield, $8^{\prime \prime}$ thickness lead all directions. Total woight, 2000 lbs.

Figure 11 - Source transportation eylinder roturning a source to the top of the MITR for ro-irradiation. Shiold, $2^{\prime \prime}$ thickness load all directions. Total woight, 200 pounds.
from the source were omitted, i.e. a sphere was approximated as clesely as pessible using the rectangular bricks. Clesure of the access well is by manual insertion of 2 lead bricks bolted tegether (50\# weight). Tetal weight of this delly is about 2000 lbs. It has transported singly without exceeding the $1 \mathrm{mr} / \mathrm{hr}$ at 1 ft. requirement a 20 curie source of Dyspresium and a 1.85 curie source of Tantalum as well as other sources of lossor strength.

A smaller centainer was alse constructed. It is cylindrical in shape having an outside diameter (less handles) of 7.25 inches. Figure (11) shows this container about te land on the reactor top. This container proved usefal in returning decayed sources te the reactor for remirradiation and alse as part of the wipe test equipment on the reactor top. The sling and custom tailered steel pallet were alse constructed. Shielding by this container is equivalent to 2 inches of load. Three inches of lead shielding is achieved with an insert at the expense of reduced shielded velume. This insert was constructed after experience dictated the need. Clesure is by manual operation of the 35 lb . top lead disc which is secured by brass clips.

Source insertion inte either container is by gravity from a bottom gate opening container placed flush on top of it or manually by squeeze grip tongs. Source removal in both cases is by squeeze grip tongs.
2. Source Expesure Container

A cylindrical lead shield for a Geiger tube was converted
te a source exposure container by milling a one inch wide by twe and one-half inches long aperture in the cylindrical wall. A

Figure 12 - Source exposure container. Left to right: source, positioning tube, cylindrical lead shield, outer steel box.

Figure 13 - Assembled source exposure container less the outer steel box. Source removal string at right side.
central copper tube (1 $1 / 8^{11}$ O.D.) was alse added. Figure (12) shows a dummy source, the central tube, the cylindrical shield, and the euter steel bex. Figure (13) shews the assembled shield with source in place less the steel bex. The cepper tube serves two functions: It is a seurce pesitioning device and alse a source removal device. Inner diameter of the copper tube is - ne inch which allows the source container te slide freely in and out but pesitions the source to within the wall thickness of the source container. Reasonably exact source pesitioning is required. (See Section IV, pert C)。 A woeden bettom, rubber padded, to provent damage to the source container, allows removal -f the seurce by removing the entire copper tube. The tube is centered in the lead shield by two woeden spacers secured to the tube. The shield is $1 \frac{1}{2}$ inches of load on the side wall and 2 inches of lead top and bettom. The whele assembly is placed in the steel bex prier to seurce insertion. After the source is inserted, the bex can be locked to provide security. This bex is alse designed se that if the lead cylindridal shield melts all melten lead will be below the hole in the bex. Some measure of source containment is thus provided in ovent ef fire。 Usually four inches of additional lead shielding in the form of $2^{\prime \prime} X 4^{\prime \prime}$ X 8^{11} bricks was necessary to meet the $.25 \mathrm{mr} / \mathrm{hr}$ at the room beundaries. This is visible in Figure (7).
4. Temperary Storage Vault

Figure (14) shows the temperary seurce sterage vault constructéd in Reom 320. It is simply $2^{\prime \prime} X 4^{\prime \prime} \times 8^{\prime \prime}$ lead bricks arranged in and under a steel bex to provide $8^{\prime \prime}$ of lead shield

Figure 14 - Tomporary storage vault for radioactive sources. Shield, 8" lead all directions. Shielded volume, $2^{\prime \prime} \times 4^{\prime \prime} \times 8^{\prime \prime}$. Room 320, Bldg. NW-12, M.I.T.
around a shielded volume of 2^{11} X 4^{11} X $8^{\text {ti }}$. Each source has a color coded hole in a weeden tray and when not in use in the expesure container it is stored in this vault. This temperary measure was necessary because the permanent vaults in the M.I.T. Reacter Building have not yet beon completed. Insertion and removal of sources from this vault is by squere grip tongs with the -bserver using a mirrer permanently meunted above the vault.

D. SOURCE MATERIALS AND CONTAINERS

The rare earth elements used in these experiments were in the powdered exide fermo Natural abundance rare earth exides 99.9\% pure were purchased from Lindsay Chemical Division of American Petash and Chemical Cerporation West Chicage。 Illineis. These powders were placed in aluminum containers designed and manufactured by the authors. Considerable time and thought went inte the final source container. Details will be given here in the hope that future workers on this prejoct will be saved from traversing the same greund.

Aluminum was choser as the container material bocause -f its short half life of 2.3 minutes. The velume of material in the container is considorable and results in a strong source of itself. Therefore, it is mandetery that this activity decay quickly unless elaberate het coll remete handing equipment is available。 Comercially available $2 S$ aluminum is suitable except that its machinability is peor. It was found that 6063 aluminum although containing a small amount of Silicon was satisfactery and the machinability was much better than 2S. One inch diameter round steck of 6063 aluminum was purchased as the raw material.

A sample of the bar was irradiated and the activity checked te determine the halfelife. This procedure is recommended for each new piece of stock purchased from a commercial supplier. It avoids wasting time making up containers from material nominally correct but actually containing objectionable impurities.
HELIARS WUSS
ND FLUX
ADD 25 NOV SUZY
IF NEED T
CLOSE THE MEZZO.

NOTE:
DRILL CENTER HOLE TO $27 / 32^{\prime \prime}$ OH LATHE; REGIS TO $7 / 8 "$. NDTE: SKIN CuT ENTIRE SURFACE ALTER WELDING TO REMOVE SURFACE OKIE

Figure 15 is a scal section of the source container. Maximum container diametor was limited te a size which would freely pass through the vertical irradiation facility available in the M I T. Maximum container length was determined by the useful height of the crystal and alse by free passage through the curved portions of the vortical irradation facility in the M I T R. These two lengths are cempatible。

The manufacturing precesses are as follows:

1) Cut round stock in $23 / 8^{\prime \prime}$ lengths.
2) Drill and reąm inside as shown in Figure (15)。
3) Machine 45° bevel on pen end.
4) Machine the top hat from round stock to dimensions shown in Figure (15).
5) Finish diameter of top hat plug for .001" interference fit with container.

The matchod pair of one opon end cylinder body and one hat plug are now ready to be thoroughly cleanod insid and out with soap and water followed by soveral cleanings with acotone. When thoroughly cleaned, the desired sourc material is placed in the body and the plug is pressed in with a hand pross until it is flush with the bedy. Accurat dotermination of the amount of material in the containor was made by befor and aftor woighings on a chemical balance. The V greore remaining on the top of the cylinder edge is sealed with heliare weld with me material added except pessibly a small mount ef 2S aluminum red te clese off the weld. Ne flux is permitted beause of the impurities which would be intreduced in the weld zone. This weld was done with the bettom 3/4 of the sample inmersed in water. This reduces
the tomperature of the interior during welding and thereby lessons the amount of air forced out of the container during wolding. The mest troublesome part of the welding process was that of closing the last portion of the bead. Escaping air, hoated by the arc, had a tendoncy to cause pin hele leaks in this part of the bead. Immersing the sample in water while welding was found to provide the necessary coeling to aveid this difficulty.

After welding, the sample is returned te the lathe and a finishing cut is made all over excopt across the weld boad on the samplo's top. This results in a bright, smoothly surfaced sample, easy te clean and easily docontaminated if necessary after irradiation. Te abselutely guarantee a gas tight sample, each completed unit is suddenly immorsed in wator at $90^{\circ} \mathrm{C}$. and hold there for 20 minutes. This test rovealed pin hol. leaks in welds during the trial and orror peried when difforent container designs were being tried out. The sample is irradiated at a tomperature of $60^{\circ} \mathrm{C}$ 。 whon the M I T R is -perated at 1 Megawatt. Figur• (17) shows a finished container ready for irradiation.

The staff of the M I R have developed a gas tight container by crimping the cap to the body. This type containor is roconmonded for source materials which cannot stand the high tomperatures of the welding precedure.

An early design which proved not te be gas tight was made by scrowing aluminum plugs inte aluminum (6063) pipe. Evon though pipe throads were used and the ends of the plug machined

Figure 16 - Inserting a sample to be irradiated in vertical facility of the MITR. Photograph taken on the reactor top.

Figure 17 - Finished sample container ready for irradiation.
-ff flush, this design consistently failed the het water test. Bubbles of escaping air could be seen at various places around the thread joint.

E. SOURCE IRRADIATION FACILITY

Sources for theso experiments were made in the M IT R° Reference (24) gives a description of the MITR. Figure (i6) shows the methed of inserting a source in one of the vertical irradiation facilitios. The vertical irradiation facilities are lecated in ports $3 G V 5$ and $3 G V 6$ of the M I T R. Figure (18) is a schomatic drawing of a° vertical irradiation facility purchased for this preject and currontly in use in 3GV6. This facility was designed and menufactured by the M T R staff. These vertical irradiation facilities are essentiaily shielded accesses te the inner reflector region of the reacter near the cere tank where the flux level is about 5×10^{12} noutrons/ $\mathrm{cm}^{2}-s e c$ when the reactor is operated at a porror of one megawatt.

Seurces requiring irradiations of mere than 20 minutes -r se are usually irradiated in the vertical facilities. Pnoumatic rabbits are available for short time irradiations but were not used in these experiments.

The handing teel for inserting and romeving the sources was designed and manufactured by the M T R staff. It is composed of $2 S$ aluminum, nylon and tygon tabing. The gripping device is pneumatically eporated by the squeeze bulb at the end of the tygen tubing.

Pigure 18
Schomatic Diagram Showing Location of JGV6 in the M.I.To Research Reactor
A. OPTICAL ALIGNMENT OF THE SPECTROGRAPH

Purpese of tho optical alignment precedure is to provide reference lines by which assembly of the spectregraph may be accomplished. It provides assurance that the assembled unit will be roady for final alignment without undue time being spont on final alignment adjustmonts. Final alignont is mado by moans of the Hartmann tost to be describod later.

Figure (19) shows the spectregraph frame. Machined surfaces A, B and C wore chocked with carpenter's lovel. A and B were found to be in the sane pline, but surface C was slightly twisted with respect to A and B. Vertical adjustment -f the film holder was lator used to correct for the twisting -f the frame.

In order to ostablish a contorline compatible with the crystal holdor mounting block, bolt holes in surface B, and the slot in surface A, the following steps were necessary: A telescope was mounted as shown in Figure (20).

Figure (20) Positioning of telescope for Optical Alignment

Figure 19 - Spoctrograph Irame, standing on odge to minimize Iistortion due to camera anglo. Machined surfaces A, B, C are labelod. Referonco lines for ropositioning the cross over point shiold platform are seen betwoen A and C and A and B.

Figure 21 - Crystal holder, contored in and secured to the crystal holder mounting block, looking from source toward film.

-

The tolescepe was leveled to swing in plane parallel to surfaces A and B. The crystal holdor was contered in the crystal helder mounting bleck as in Figure (21)。 Centerline scribe marks had been provided, front and back, on the crystal holdor during its manufacturo. Using the frent face reforencemarks, a conterline was scribed on the frent odge of the crystal holder mounting bleck by moans of stoel square and scriber. Figures (22) and (23) show the crystal holdor mounting bleok. The crystal holdor was thon romoved from the mounting block and the mounting bleck was belted to surface Bo Care had to bo used te contor the mounting block with respoct to the tapped holes in surface Bo A scribe mark inte surface B was placed at the junction of the mounting block centorlino and surface B. The mounting bleck was then remetod from surfece B_{0}

Next, the telescope was positionod left and right until the vortical cross hair passod through tho mark on the front odge -f surface B and the conter of the Iot in surface A. We have now established a vortical plene which is porpondicular to surfaces A and B and which passos through the contor of the slet In surface A and which will 2 so pas through the conter of the crystal holder mounting bleck when it is momted on surface B. The tolescop pesition was not changed during the romainder of the optical alignment procedure。

Fecusing of tho tolescope on each machinod surface and separate focusing of the cress hair on the same surfaco was possible with the tolescepe unit used. This arrangoment permitted very courat pesitioning of stol straightedge parallol to the tolescopic lise of sighto Allowance was made

Figure 22 - Crystal holdor mounting block, plan viow.

Figure 23 - Crystal holder mounting block, front viow.
for the thickness of the scriber used. Thus, the permanent referonce centerline of the spectrograph was scribed inte surfaces A, B and C using machinist blue for contrast. These lines are visible in Figure (19).

A chock was now made to insure that the vertical plane passed through the conter of the crystal holder. This was done by belting the crystal holder mounting block te surface B using the established lines as references. Next the crystal helder was secured to the mounting block using the established lines as roferonces. It was found that the telescopic vertical cress hair fell exactly on the centerline of the crystal helder. However, there was no assurance that the plane through the crystal holder vortical faces was perpendicular to the vertical plane of the cross hair. In order to provide this and as positive alignment check the crystal holdor and mounting block were reversed as unit and remounted to surface B using the ostablished lines (now on the face away from the telescope) to pesition the unit. The telescope was then used te oxtend the crystal helder centerline to the mounting block back face.

Next the crystal holder and mounting bleck were removed and remounted in the forward direction. It was found necessary te ream the holes in the mounting block to line up frent and back with the line on surface B. After this was done, alignment te surface B was attained.

The film holder was now placed on surface C and leveled by means of the adjustment screws. This insured that the film or emulsion in the holder would be parallel to the crystal.

Center of the focal circle was found by using a large beam compass set to 1 meter distance and measuring back from the neutral axis of the crystal as mounted on surface B. A bolt was placed in the slot in surface A and the center punched in the bolt head. Rough positioning of the film holder was obtained by swinging the beam compass from the bolt center and requiring the film holder to conform to the arc swept by the compass. Further refinement of the film holder position was attempted by the following two means:

1) Line light source method

A line light source was placed on the focal circle about 15 cm to the virtual image side of the spectrograph centerline. In a darkened room the image of the line source reflected from the surface of the quartz crystal is visible on white paper. The paper was moved toward or away from the crystal until the observer picks the position of best focus. The film holder is then moved to conform to the new focal circle. It was found that different observers differed by as much as a centimeter in choosing the position of best focus.
2) Beam compass method

The crystal holder used in this spectrograph had been in use previously at the Radiation Laboratory, Livermore, California. Calculation of an average value of the radius of curvature was possible from the data of reference (9). Using the bolt secured in the slot of surface A and 2 beam compass setting determined as the calculated average value of the focal circle radius, measuring along the spectrograph centerline from the neutral axis of the crystal fixes the new center of the focal circle. The new center was scribed into the bolt head. Swinging

$\%$

the boam compass from the conter, permittod adjustmont of the film holdor to conferm to the fecal circlo.

The spectrograph is now roady for the Hartmann tosts. Appreximately twe complete working days wore spont on an optical alignment. This is considered a maximum because the sonsitivity of the Hartmann test is much greater. Honce final alignmont is the result of the Hartmann Test and rough alignmont only is required of the optical alignment precedures.

The most significant alignment check of the spectregraph is the "Hartmann" test. This name comes from reforence (11) and is taken by analogy with the Hartmann method of testing the aborration of focus of large astronomical mirrers. The purpese of the Hartmann test is twofold. It determines the line width due te residual imperfections of the crystal plus curvature of its noutral axis and alse the amount and direction of movement of the film helder required te reach the peint of best fecuse Basically, the Hartmann test measures the difference of line position from various segmonts of the crystal. This is accomplished by shielding the crystal se that only a given segment of it is used in any one source exposure. Likowise, the film is shielded to record the lines from only one segment at a time, while reserving the shielded part for exposure to the segment of the crystal chesen arbitrarily as the reference segment.

A pertable x-ray machine known as the "Hot Shot", manufactured by Picker Xoray Corporation, was used as the source during these tosts. The $K \alpha_{1}$ and $K \alpha_{2} x$ ray lines from the tungsten target wer focused by the crystal. Due to the large offective source strength of this machin. ne screon medical x-ray film could be used for detection. A lead shield which blanked out all but eno-fourth of the crystal was used to select the crystal segments. Lead shields machined from $1 / 4^{\prime \prime}$ lead plate permitted exposure of the film in $1 / 4^{\prime \prime}$ horizontal strips. (Figure (24) shows the designation of crystal quadrants and asseciated expesed film sections.)
侸

Figure (24) Left: Crystal, Quadrant Dosignations Looking From Source Toward Film. Rightः Film Section Designations. A Was Expesed T• Rays From 1, B From 2, Etc.

Differences in line pesition in the four film sections were read by moans of an optical comparator. Section A from quadrant was arbitrarily picked as the reference and the differences from A plus or minus were determined from the comparator readings.

Figure (25) depicts the methed used for reducing the Hartmann test data to values which can be pletted on a reasonable size plet. The pie shaped pieces formed between a ray and a focal circle dimetor through the center of the crystal wore appreximated by triangles. This intreduces negligible orror because the arc lengths approximated by cords are very small compared to the radius of the circle. Distance a is $l / 4$ of the offective crystal width and equals 19.0 mm 。 Distance b is determined from the comparator readings of the Hartmann test film。 When optical elignment, as described previously, precedes the Hartmann test, distance b will be very small. In this case,

$m=b-\frac{z\left(1+\frac{a}{b}\right) b}{2 R}$
$x=\left(\frac{k}{a}\right) y$
$m \approx b-\frac{3 a}{2 k}=b-.478 \mathrm{~mm} . \quad x+y=2 R$
V: HERE $z=50 \mathrm{~mm}, a=19.0 \mathrm{~mm}$. $\frac{m}{b}=\frac{x-z}{x}$
Figure 25
Determination of Distance m for Plotting Hartmann Test Data
(
b was <.ll mm. Therefere, the ratie a / b is large, of the erder of 200. Hence, $(1+a / b)$ is appreximately a / b. Distance zwas chosen arbitrarily as 50 mm for plotting convenience. Distance m is found from similar triangles and, to the accuracy obtainable in the plotting, it equals $\left(b-\frac{Z a}{2 R}\right)$, whore R is the radius of the fecal circle.

Figures (26) and (27) show the results of the first and last Hartmann tests conducted. From the comparater readings, the differences $A C, A B, A D$ were detormined. These were then converted to distances from a line midway betwoon the extrome rays. In these tests, it was midway between A and D. These values of b are plotted on horizontal scale of $\mathcal{I}^{\prime \prime}=.05 \mathrm{~mm}$. Noxt wo calculate values of m for oach ray and plot these to the same horizontal scale at a vertical distance of $z=5 \mathrm{~cm}$ from the peints A, B, C, and D. The vertical scale is $1^{\prime \prime}=250 \mathrm{~mm}$. The plet is completed by drawing lines $1 A, 2 B, 3 C$, and $4 D$. The region of least aberration of fecus is determined and alse the direction and amount of movement of the film holder needed te reach the pesition of best focus.

Figure (26) revealed that the film heldor should be moved 1 cm toward the crystal. This was done and the Hartmann test repeated. This procedure was followed until the test results indicated that the film holder should be moved 1.5 mm . This is the same order of magnitude as the thickness of a 600 micron nuclear omulsion mountod on glass backing plant and wrapped in light tight envelepes. We alse found that the 1.5 m indicated movement was oscillatory. Evory other tost indicated movemont in the ppesite direction from the previeus adjustment. Figure (27) shows the results of the fourth and

3

 *

last Hartmann test conducted. This plet indicates a widh at best focus of .015 mm and width at film position used of .030 mm . The authors were fortunate to have a crystal and crystal holder which achieved a line width due te residual crystal imperfections and curvature of the neutral axis of .03 mm . compared te a value -f .05 mm reported in reference (11). Upon completion of the Hartmann test number 4, the spectregraph was considered aligned and roady for use.

The use of a portable x-ray machine for conducting Hartmann tests is highly recommonded. The offective source strongth of such a machine exceeds by many times the largest radieactive source strength that could be conveniontly handled in the present experimental set-up. In addition, the x-ray machine can be turned off as desired. A complete test, including comparater readings and pletting can be accomplishod in an oight hour day using the x-ray machine. On the ether hand, the time to de a Hartmann test using a nuclear line such as the 68 Kov tungsten line from docay of $\mathrm{T}_{2}{ }^{182}$ would take much longor (of the order of 2 weoks), due to source handling, omulsion processing, and additional expesure time noeded te got a measurable line.

Figure (26) revealed slant lines as well as vertical
lines. However the slant lines appeared only in quadrant 2, The angle of divergence was measured and found to be about 9°. These lines come from the (932) planes in the crystal. The calculated angle betweon (310) and (932) planes is $9^{\circ}-03^{\circ}$. Alse the spacing between the lines corrosponds to (932) reflection. The second quadrant is the only one in which the

ITen tint

Bragg condition was satisfied for the (932) planos. T• prove conclusively that the slant lines come from other planes and not stacking faults in the crystal, a series of films wore made using the x-ray machine. These are shown in Figure (28). Note that the slant lines can bo made to disappoar or ovon change sides by changing the vertical pesition of the source relative t- the crystal, i.e., not satisfying the Bragg condition for the additional planes or deing se for the symmetrically eppesite member of the family. Alse note that a second set of slant lines appeared at 17°; these are'due te the (934) planes.

Published photographs in referencé (9) also show slant lines but ne oxplanation is given in that articié. It is most probable that those lines are due to refraction from planes -ther than (310).

By aligning the conter of the source at the conter of the crystal in the vertical direction, the authors wore able to avoid slant lines appearing on the emulsions.

Figure 28 - Slant line study on No Screen x-ray film.
A. Full crystal used with 30 milliamp-minute oxposure, using portable x-ray machine. Head lower than crystal mid-height, 1° up tilt on machine. Note slant lines to right, from (932) planes.
B. $3 / 4$ of crystal used, quadrant 2 shioldod, with 30 milliamp-minute exposure. Head of machine positioned as in A. Note absence of slant lines from (932) planes.
C. $3 / 4$ of crystal usod, quadrant 2 shiolded, with 30 milliamp-minute exposure. Head lowered 1 1/4" from position used for A and B. Note that slant lines from (932) planes have reappeared. Also seen are lines from (934) planes. Vertical lines from (310) planes are absent.
D. Full crystal used, 30 milliamp-minute exposure. Head raised 3 1/4" from position used for C. Note slant lines to left from (932) and (934) planes as well as faint vertical lines from (310) planes.

C. SOURCE POSITIONING AND SHIELDING

1. Source Pesitioning

The source must be positioned se that the desired band of gama ray energies will be selectively diffracted te the emulsion, while at the same timés the emulsion is shielded from the direct rays. The pesitioning is always a compremise betweon three restrictions:
(a) High energy limit, determined by the crystal not soeing all of the source on the high onergy side - f the crystalo
(b) Lew energy limit, determined by the crystal net seeing all of the source on the low energy side of the crystal.
(c) Diroct beam blackening of the emulsion in the energy range of interest.
"Seeing" in the present context is taken te mean that gamma rays from the source strike somewhere on the crystal surface at the required Bragg angle。

Directly from the Bragg Law, it is clear that the lowor onergy rays will be diffracted through larger angles than higher energy rays. We may define the low energy side of the crystal as being the side of the crystal in which the largest Bragg angle is pessible for given source pesition. Similarly, we may define the high energy side of the crystal as being the side in which the smallest Bragg anglo is possible for a given source pesition. In figure (29), the lew energy side is the left side and the high energy side is the right side of the crystal. In the Cauchois geometry, with an extonded source, the ler onergy

rays aro focused in pesitions furthor to tho right on the film than higher energy rays. It is apparant from Figure (29) that the high and low energy rays must cress each othor somowhere betweon crystal and film. Hers the bundle of rays is about the same width as the souroe. A shield placed at the cross over peint will pass the diffracted rays and bleck the direct rays from the film.

In detormining wher to pesition the sources the following considerations apply. It can be seon from a study of Figure (29) that the high energy outoof is raised on the onorgy scale by moving the source to the left. On the ther hand, such a movement would increase the amount of blackening of the film by direct radiation, and at the same time raiso the low onergy cut-off. If the source were moved to the right, the direct radiation and lowor onergy cutoff limits would be improved at the expense of a roduced high enorgy cutcoff. Movement away from the crystal in gonoral slightly holps the diroct blackening limit, but reduces the spread of energies between high and low energy cut-eff. Instrument officioncy is reduced because of the increase of source to film distanc and bielogical shield weight is increased because of the incrossed sourc to crystal distance.

The highor enorgy linos are thes with lowost overall officiency, thorofore it is vory important that all of the source width be ffoctive on the high onergy side. In some cases a partially offective searce width fer the lower energy lines is acceptable bocause of the highor instrument officiency. It is alse true that lower onargy rays for which the
source width is only partially effective could be detected oxcept that thoy got blocked out by the right hand part of the cross ovor shield. If this shielding is moved to allow passage of these rays, the high onergy limit is lowered because of the direct beam blackening. A direct shield placed as shown in Figure (29) can help this situation by shielding the direct beam and thus maintaining the high energy limit at the same value while the cress over shiold lowers the low energy limit. This procedure was found valuable in allowing some x-rays to be dotected in the same exposure as higher energy lines.

Prier te expesure of an emulsion to source, the authers determined the energy range of greatest interest. Varieus source positions were then checked for energy limits by using a string technique. The source exposure centainer was placed in a position estimated from past experionce. A string was then stretched from the left odge of dummy source in the exposure container to the left edge of the crystalo then straight te point A of Figure (29), where A is the virtual image of A^{\prime}. This dotermines the low energy cutoff. An onergy scale was extended to the virtual image side of the fecal circle se that the low energy cutoff could be read directly at A. Similarlyo using the right edge of the dummy source and right or high energy side of the crystal, the high onergy cutooff could be read at B 。

The pertion of film blackened by the direct beam was thon checked by stretching the string from the left edge of the source to the right odge of the crystal, which was made

coincident with the direct shield, and then straight to peint C. The energy of point C was read from the energy scale on top of the film helder. The energy read directly at peint C was decreased te allow for scattering and diffraction of the direct beam and secondary radiations. A linear dimension allowance of $1 / 4^{\prime \prime}$ was found sufficient. Since the onergy scale is not linear, the amount subtracted from the energy value of C doponds on the onergy value itsolf. Clearance through the cress over shield was alse checked using strings to simulate rays.

The string technique discussed here preved amazingly sound for predicting the energy range over which an emulsion could be relied upon te receive rays from a given source position. As a practical matter, all emulsions expesed in these experiments wore from on of three seurce positions. The reference lines from the tantalum source wore from a pesition which passed energies of 50 to 175 Kev , with direct darkening at 500 Kev . A higher energy pesition of 75 to 400 Kev , with direct derkening at 500 Kov was used for some expesures. A third position passing energies of 55 te 250 Kev , with direct blackening at 290 Kev was used for samarium.

It was discovered in the conduct of these experiments that reasonably exact source pesitions are required. Alse of impertance is the ability te reposition a source once it has beon romeved in the middle of a film expesure for reirradiation in the reactor. The source exposure container described in Section III C (3) was adequate in maintaining a position once ostablished and in allowing removal and accurat repesitioning. This container has the considerable advantage of being light onough

so that one person can move it or adjust its position. Biolegically it is not adequate. Figure (30) shows a source being inserted inte the expesure container.
2. Source shielding

Only very appreximate source shielding calculations were made. The same general assumptions were used as in Section III C (2). It was found that a four inch lead wall around the expesure container would provide adequate personnel shielding for all sourcos used in this thosis. The load wall was built with standard lead bricks. The weight of the shield was about 1000 lbs, which was acceptable from the standpoint of floor and table leadings.

Figure 30 - Method of source insertion into source exposure container. Funnel and guide block are replaced by lead top after source is in the container.

D. SOURCE IRRADIATION AND HANDLING PROCEDURES

It has been mentioned previously that the Cauchois geometry spectrograph, with its extended source, permits the use of relative intense sources of gama rays. The M.I.T. research reactor was used to irradiato samples of rare earth oxides to propare these sources. It is the purpose of this section to doscribe the calculations and procedures involved in the prom paration, irradiation, and handling of these sources.

Before making any calculations, it was necessary te estimate the integrated activity to which it was desired to expese each plate. For examplo, it was experimentally determined that about 55 curiowhours of Ta^{182} exposure were adequate to give strong calibration lines on each plate. The branching ratios of the rare earth isetopes investigated are in general not known with sufficient accuracy to permit preciso dotermination of integrated activity for a spocified gamma ray line. Since the present investigations wore largely oxploratory, it was desired to obtain as many gamma Iines from tho raro oarth isotopes as pessible in the time available. To this end, it was found convonient to attempt to get about 50 curieohours exposure on each of the rare earth plates. Where feasible longer exposures are obviously desirable to pormit some of the less intense gamma ray lines to appear.

Once the goal of 50 curiowhours has been establishod, it was possible to calculate the source strengths required fer various lengths of exposure timo. Obviouslys the stronger the source, the sherter the time required in the spectrograph. However, there are three practical limits imposed on source

1

4ani $y=$

strengths. First, the activation ratos in tho roactor were generally low, requiring irradiations of soveral days to a weok. This is result of the fact that tho major portion of tho noutron captures preduce stable isotopes. The short time available for this portion of the thesis did not permit oxtended irradiations. The second limitation of source strength was the saturation activity roached in the roactor for tho short halfolifo isotopes. In these cases, ropeated irradiations and film oxposures wore required te achiove 50 curieohours. Tho third limitation was the consideration of the adequacy of the shiolding in the handling equipment, and the estimatod dose rate which would be received in handing the sourco. Tho last Iimitation was found to be far less restrictive than the first two. Actual irradiation times, source strengths, and film exposure times were determined for each rare earth sample as compromizo of th above considorations.

Onc the desired source strength had beon doterminedo proliminary calculations of reactor irradiation time wore mado. For this purpose, the samplos wore assumed to contain 20 gms of the rare earth powdor, and the surface aroa of tho ctivo material. which is of intorost in black body calculations, was taken as $30 \mathrm{~cm}^{2}$.

The majority of the rare earth samplos have neutron absoption cross soctions of the order of thousands of bams. Therefore, many of the samples were effectively "black bodies" or "gray bodies" to the nowtren flux. Estimatos of the flux doprossion in the smple were mades using motheds similar to

diffusion control rod theory. However, these methods offered little gain in accuracy over engineering estimates based on past experience, i.e. the additional calculation time is not worth the effort. The container walls were found to have little effect on the flux.

Once the preliminary calculations had been refined and checked, a trial irradiation was conducted for each sample. This irradiation time was usually of the order of $1 / 10$ that calculated to be required for full source strength. Following the trial irradiation, the actual source strength produced was measured by a "Juno" survey meter in a fixed geometry arrangement. In this geometry, the source could be accurately positioned at one meter from the measuring device. The source strength was then calculated from the relation

$$
c=\frac{R \times d^{2}}{5.20 \times 10^{6} \times 7}
$$

```
where C m source strength in curios
    R = measured dose rate in mr/hr
    d $ distance, source to detector in cm
    E = average energy of electromagnetic radiation
        emitted by source
```

Although this relation is approximato at bost, and is subject to inaccuracies, it provided results adequate for the present purpose.

The measured source strength permitted refined calculations to be made for activation ratos and irradiation
年

[^0]times in the roactor. The prime uncertainty that the test irradiation reselved was the admittedly gress estimate of the flux depression in the sample.

The sample was inserted in the vertical facilities 3GV5 or 3GV6 of the reactor, using a gripping device which attached te the top hat of the sample container. The sample container is shown in Figure 17. Before insertion in the reactor, the entire sample surface was carefully cleaned with acetone te romove any pessible foreign material which could be activated by the noutron flux. However, on romoval from the reacter, the samples were usually found te carry varying degrees of surface contamination. Surface wipes, made with acetone seaked paper tissues, were conducted behind lead shields. Four surface wipes were usually sufficient to reduce the contamination received on a dry wipe test to about $.5 \mathrm{mr} / \mathrm{hr}$. Fortunately, all the contamination -bserved decayed with a half - life of twe to three hours, and se did not constitute a long term hazard.

Following a satisfactory wipe test, the radioactive sample was transferred to one of the shiolded transportation containers described in Part C, Section III, for movement to the spectre- $^{-}$ graph area. On arrival in Room 320, the source strength was measured with the "June" meter in the fixed geometry. After this, the source was placed in the expesure container, as shown in Figure 30, and the exposure started.

Handling of the source from the lead shielded transpertation container, to the fixed geometry, to the expesure containor (and from the exposure container te the storage vault after completion of the exposure) is accomplished by one meter long tongs.

This is the only time during the entire handling precedure that persennel wero nocessarily expesed to an unshioldod source. It is during this poried that the highest dese rates wore received. With practice, it was found that the person handling the source noed bo directly expesod only about 10 seconds. Because of the high energy gamma rays omitted, the mest difficult isetepe to handle was the 1.8 curie T^{182} calibration source. Average deses recoivod in its handling wore from 3 to 5 mr . It is omphasizod, howover, that considorable care is required at all times when handling sources of this magnitude.

Table I is a summary of all rare earth source irradiations and film oxpesures made during the conduct of this thesis.

TABLEE I
Radioactive Source Summary

Isotope	Half-Life	Source strength at start of exposure (curies)	Film int grated activit (curie-hou	Iines Measured (Kov)	Remarks
Na^{147}	11.3 days	.27	18.2	91	
Sm 153	47. hrs.	.71 to 1.6	94.0	70, 97,.103	Total of 4 different imradiations exposures
Dy^{165}	2.32 hrs	21.6	71.6	95	
폭17	$7.5 \mathrm{hrs}$.	1.6 to 2.0	45.8	112, 124, 308	Total of 3 different irradiations α exposures
Yb 169	32. days	1.90	164.	$110,131,177,198$	
90^{175}	$4 \cdot 1$ days	3.16	211.	$114,145,282,396$	late
Yb ${ }^{169}$	32. days	.94	51.6	64, 110	Second Yb plate
Yb^{175}	4.1 days	- 36	19.7	114	Second Yb plate

Note: Integrated radioactivity in curie-hours applies to best estimates of total source activity, not to transitions by any particular gamma ray branch.

E. DETECTION PROCEDURES

Detector requirements for measurement of gama ray energies with high precision using a bent crystal spectregraph are:
(1) Detector reselution at least equal to the crystal resolution
(2) Highest pessible efficiency for detecting gamma and x-rays of all energies
(3) If a counter is used, the detector mast be stable because data cellecting perieds will be long due te low intensity of diffracted rays.
(4) Reliable as possible

It is apparent from these requirements that an ideal detecter is almest impessible te attain. The best detecter developed to date for the Cauchois geemetry instrument is Ilford G-5, 600 micron thick emulsion, mounted on thin glass plates. Such emulsions were used in these experiments. This detection system allors simultaneeus detection of gamma and x-rays over wide energy bands.

- These emulsions require special care. Thoy must be protected from light and extraneous electromagnetic radiations at all times. Storage in a moist atmosphere is roquired te provent the omulsion from drying out. Double thickness light tight envelopes were made from heavy black construction paper. Te prevent the emulsion from sticking to the light tight envelopes, it was necessary to wrap the glass backed omulsion plates in thin plastic such as "Saran Wrap" prior to insertion inte the envelopes. T• avoid high background radiations, the emulsions were stored in a darkroom, far removed from the exporimental area. The storage

atmesphere was kopt moist by the evaperation of water from a pan in the drawer.

Precision measurement of gamma ray onergies depends on accurately measuring the distance between lines on the omulsion. Therefore, it is vital that shrinkage of the omulsion be minimized. Placing the emulsion on glass te which it adheres tightly has proved a satisfactory methed of minimizing the shrinkage. However, introduction of glass inte the detection system reduces the reliability. The mounting must be flexible enough se that the emulsion can be bent in the film holder to conform to the focal circle. The authers found the glass thickness te be quite critical. Twe out of three plates of .033 inch thickness cracked during expesure, while none of the seven plates of .027 inch thickness cracked during this peried. On of the thinnor plates did crack, however, during shipment or developing. The thicker plates apparently did not crack while being inserted and bent in the film holder. The glass cracked sometime later, while still bent te the one meter radias of the focal circle. The thickor glass could quite probably be used in a spectregraph of larger radius.

Estimates of expesure times required te preduce readable Innes were based on measured source strengths and published branching raties (23), where known。 At 100 kev , an expesure of one curie hour has been found sufficient by the authors of reference (8). Since the efficiency of the instrument decreases by a factér of 100 at 300 kev , considerably longer expesure times are required for the higher energy gamma lines. In practice very few of the branching ratios of tho isetopes in the

rogion of investigation are known with sufficient accuracy te permit accurate estimates of expesure time. As a geal, all rare earth elements wore expesed for appreximately 50 curie hours. Whereever pessible, and as time permitted, lenger expesures were made. For example, the dyspresium source was expesed for appreximately 72 curie-hours and the ytterbium source for 164 curie-hours of Yb^{169} and 211 curieohours of Yb^{175}.

For reforence lines, the K xarays from $T a$ and W, and the 68 kev and 100 kev nuclear lines in W were placed on each plate with a Ta^{182} source. It was, found that detectable lines could be -btained with about 35 curie-hours, but lines of much better readability resulted from 55 curie-hours.

Reugh chocks of emulsion expesure time were obtained by placing twe separately packaged x-ray films in frent of the omulsion. These films were taped onte the front of the film holder, and se could be removed for develepment without disturbing the omulsion. The lines recorded on the xaray film were not in geod focus, being almest 1 l/2 inch inside the fecal circle. However, the intense x may lines from the source were readily detected on the film and some low enorgy gamma rays were intense onough te alse be detected. These films were develeped while the emulsion was still in the film holder. A decision, based on the film results, was made on whether te terminate or continue the expesure of the emulsion. These films and their light tight onvelepes alse porform the function of stopping soft socondary radiations from reaching the omulsion. This lessens the goneral darkening of the omulsion.

SECTION V - DATA REDUCTION AND CALCULATIONAL METHODS
A. MEASUREMENT OF LINE POSITIONS

The operation of the bent crystal spectrograph depends on the fact that the position of a gamma ray line along the focal circle is a measure of its energy. The precision of the present method of energy determination is made possible by the capability of making highly accurate measurements of relative linear positions of gamma ray lines recorded on a nuclear emulsion along the focal circle.

Besides the gamma lines from the rare earth source, each plate contains the K_{α} and K_{β} x-rays and two nuclear lines from the Ta^{182} calibration source. In most cases, five calibration lines were measured, $T a K_{\alpha_{1}}$, $W \quad K_{\alpha_{1}}$ and $K \alpha_{2}$ and the 68 kev and 100 kev gamma lines from tungsten.

Measurements of the line positions were made on an optical comparator available in the Spectroscopy Laboratory at M.I.T. The comparator was manufactured by Adam Hilger, Ltd., London, and has scale graduations, including Vernier, for distances to .001 mm . To provide statistically significant data for the calculations, each of the five calibration lines and each of the unknown gama lines were read by at least three separate observers. Each observer would read the plate from left to right three times in succession, taking care to work all backlash from the screw drive after each reversal of direction of motion. The entire procedure was then repeated by all observers, after having turned the plate ond for end. Again the reading was from left to right on the comparator, but in this case, the plate was traversed in the opposite direction. This procedure was adopted in order to avoid systematic errors from

pessible imperfections in the screw drive. The left and right odges of each line are measured, and then averaged te obtain the pesition of the line center. Center line pesitions, repreducible te within about . 020 mm wore -btained in this manner. As an added precaution te eliminate systomatic orrors, the plates were shifted vertically betweon each pass to place the field of vision of the micrescepe on 2 different part of the plate。
$-2+1$

B. CALCULATION OF GAMMA RAY ENERGIES

In principle, Bragg's Law determines the wavelengths of the lines ebserved on the omulsion. Wo may state Bragg's Law in an applicable form as:

$$
\begin{aligned}
& \frac{\lambda}{2 d}= \sin \left(\frac{h-h e}{R}\right) \\
& \text { where } \lambda \text { is the wavelength of the line } \\
& d \text { is the grating constant of the (310) } \\
& \text { plenes of quartz used for the reflection } \\
&\left(h-h_{0}\right) \text { is the, line pesition measured from the } \beta \\
& \text { point. along the fecal circle } \\
& R \quad \text { is the diameter of the fecal circle }
\end{aligned}
$$

The wavelengths expressed in x units (Seigbahn scale) may be converted inte onergies, E, in kev by using the conversion constant given by DuMond and Cohon in reforence (6) as

$$
E=\frac{12372.44 \pm 0.16}{\lambda}
$$

The quantity 2 d for the (310) planes of quartz has boon determined by number of ebservers and is reperted in reference (21). We have used the value at $20^{\circ} \mathrm{C}, 2 \mathrm{~d}=2355.34 \pm 0.04 \mathrm{x} . \mathrm{u}_{\mathrm{o}}$, fróm roference (21).

It can be soon from the Bragg Lan that any pair of calibration lines, with their known wave lengths will yield a set of two simultancous equations in the unknowns R and h. Actually R is an instrument constant, which can in principle be measured. It has been found, however, that direct measurements of R result in loss precise values then the R dotermined from the calibration lines. By solving for R and h from a known

为
pair of calibration lines, and introducing h_{3}, the measured position of the unknown line, the unknown wave length may be determined. The resulting expression, from reference (7) is obtained, keeping only the first two terms of the power series expansion for the arcsin:

$$
\lambda_{3}=\lambda_{2}+\frac{h_{3}-h_{2}}{h_{1}-h_{2}}\left(\lambda_{1}-\lambda_{2}\right)\left[1-\frac{1}{6}\left(\frac{\lambda_{3}-\lambda_{1}}{2 d}\right)\left(\frac{\lambda_{1}+\lambda_{2}+\lambda_{3}}{2 d}\right)\right]
$$

where λ_{I} and λ_{2} are the wave lengths of the calibration lines, and h_{1} and h_{2} their measured positions. The correction term is -f the order of 0.1% and need net be evaluated with great precision.

There will, in general, be available more than the two calibration lines necessary to solve for λ_{3}. Therefore, there will be several values of λ_{3} obtained. A rigorous method of finding the mean or best value is practical only if the calibration line data is statistically independent. If all possible calibration pairs are formed from the lines measured, i.e. three pairs from three calibration lines, it is clear that the values se obtained are not statistically independent. From consultation with Prof. Hans Mark, one of the authors of references (7) and (9), it was determined that the method of calculation of the Livermore group had been modified for this reason. The calculational methods of reference (9) are therefore used as a guide in this thesis.

The method of calculation used here is essentially that -f reference (9) up to the completion of the least squares solution for R and h. It is convenient to state Bragg ${ }^{i} s$ Law as follows:

$$
\arcsin \frac{\lambda}{2 d}=\frac{h-h_{0}}{R}
$$

We have used five calibration lines on each plate. Wave length values for these reference lines are given in Appendix B. Any pair of calibration lines will determine values of h_{0} and $R_{\text {. Five }}$ calibration lines will overdetermine R and h_{0}, therefore a least squares solution was used to find the "best" values of R and h_{0}. The least squares solution was obtained by fitting the calibration line data to a relation of the form

$$
R x+b_{0}=h
$$

where x arcsin $\frac{\lambda^{\prime}}{2 d}$ with $\lambda^{\prime}=$ wavelength of a calibration line

The specific formulas used for calculating R and h_{0} are taken from reference (26) as follows:

$$
\begin{align*}
& R=\frac{n \sum_{i=1}^{n} h_{i} x_{i}-\sum_{i=1}^{n} X_{i} \sum_{i=1}^{n} h_{i}}{n \sum_{i=1}^{n} X_{i}^{2}-\left(\sum_{i=1}^{n} X_{i}\right)^{2}} \tag{1}\\
& h_{0}=\frac{\sum_{i=1}^{n} X_{i}^{2} \sum_{i=1}^{n} h_{i}-\sum_{i=1}^{n} X_{i} \sum h_{i}^{n} X_{i}}{n \sum_{i=1}^{n} X_{i}^{2}-\left(\sum_{i=1}^{n} X_{i}\right)^{2}} \tag{2}
\end{align*}
$$

where n is the number of calibration lines Each set of observations made by one observer in a single traverse of the plate yields statistically independent data.
A least squares determination of R and h_{0} was therefore made

for each such sot of data.
The wavelengths of the unknown lines were then computed by using the observed values of h with the least squares values of R and h_{0} from the same set of observations. Hence, each unknown wavelength was calculated for each observer for each traverse across the plate. Usually eighteen such observations were made for each plate. The resulting eighteen values of λ are statistically independent, avoiding the difficulty of averaging statistically dependent quantities that was encountered in the previous method. Each value of λ has the same weight, therefore $\bar{\lambda}=\frac{\sum_{i=1}^{n} \lambda_{i}}{n}$
Sample calculations are shown in Appendix A for the 95 gev line of Ho^{165}. All values of wavelength reported in this thesis were calculated by hand using a desk calculator. The data from the various observers was inspected in an attempt to discover systematic errors. None wore observed.

C. DETERMINATION OF STANDARD DEVIATION

Wo again start with Bragg's Law in the form:

$$
\lambda_{1}=2 d \quad \arcsin \frac{h i-h e}{R}
$$

where nomenclature is the same as in Section V, Part B. Next, wo make the approximation that $\arcsin \left(\frac{h_{1}-h}{R}\right) \doteq\left(\frac{h_{1}-h_{0}}{R}\right)$, 1... the angles are small. The reader may easily convince himself that this is an excellent approximation for the purpose of propagating errors. The rules for the propagation of errors for differences and for products and quotients have been used to derive the following expression for the standard deviation of the calculated wave length:

$$
\begin{equation*}
\sigma\left(\lambda_{1}\right)=\sqrt{\lambda_{i}^{2}\left[\left(\frac{\sigma_{d}}{d}\right)^{2}+\left(\frac{\sigma_{h_{1}}{ }^{2}+\sigma_{h_{0}}^{2}}{\left(h 1-h_{0}\right)^{2}}\right)+\left(\frac{\sigma_{R}}{R}\right)^{2}\right]} \tag{4}
\end{equation*}
$$

From reference (21$)_{0}$ wo can calculate $\left(\frac{\sigma d}{d}\right)^{2}$ as 3×10^{-10}. After evaluation of the ether terms, we will find that the contribution -f $\frac{\sigma d}{d}$ is negligible.

The evaluation of σ_{R} and $\sigma_{h_{\bullet}}$ is not straight forward from the least squares solution described in Part B because the assumption was made there that ne error existed in the values of the calibration wave lengths. This assumption was made in order to got a least squares calculation that is amenable te hand methods. It does not significantly affect the final values reported for the measured wave lengths. However, a standard deviation calculation based on this assumption would ignore the deviations in the calibration wave lengths that are known to exist, and therefore would predict toe small an error for R and h_{0} 。

Rigorously speaking the calculation of σ_{R} and $\sigma_{\mathrm{h}_{\bullet}}$ should

come from a determination of the correlation coefficient betweon R and h. This is a long and cumbersome process for hand calculations yielding values of $\sigma\left(\lambda_{i}\right)$ not much different than the ones roperted hore. The $\sigma\left(\lambda_{1}\right)^{\prime} s$ reperted in this thesis were calculated by an approximate methed to be described. We feel that the appreximate calculations for $\sigma\left(\lambda_{i}\right)$ arevalid bocause values obtained compare favorably with the values reperted in reference (9), which were machine calculated by the rigereus methed.

A geod estimate of the standard deviation of the roperted wave longth values may be obtained by the following appreximate analysis of orror propagation. We know from physical roasoning, and it can alse be verified from the least squares formulas, that R and h_{0} are functions of h_{i}^{\prime} and λ_{i}^{\prime}, where h_{1}^{\prime} is the position and λ_{1}^{\prime} the wave length of the calibration lines. A primed quantity refors to the calibration lines. This information plus the general law for propagation of errors onables us te get valid appreximate values of R and h_{0}. From the genoral law for propagation of orrors, we got

$$
\left(\sigma_{R}\right)^{2}=\sum_{i=1}^{n}\left(\sigma_{i}\right)^{2}\left(\frac{\partial R}{\partial \lambda_{i}^{\prime}}\right)^{2}+\sum_{i=1}^{n}\left(\sigma_{h_{i}}\right)^{2}\left(\frac{\partial R}{\partial h_{1}}\right)^{2} \quad \text { Eq. (5) }
$$

and

$$
\begin{equation*}
\left(\sigma h_{\bullet}\right)^{2}=\sum_{i=1}^{n}\left(\sigma_{i}^{\prime}\right)^{2}\left(\frac{\partial h_{0}}{\partial \lambda_{i}{ }^{i}}\right)^{2} * \sum_{i=1}^{n}\left(\sigma_{1}{ }^{0}\right)^{2}\left(\frac{\partial h_{0}}{\partial h_{i}}\right)^{2} \tag{6}
\end{equation*}
$$

We must now evaluate each of the derivatives and alse determine $\sigma_{i}{ }^{0}$ and $\sigma_{h_{i}}^{0}$. From the first order appreximation of Bragg's Law, $R \approx \frac{2 d}{\lambda_{i}} \quad\left[h_{i} \quad h_{0}\right]$

and hence

$$
\frac{\partial R}{\partial \lambda_{i}} \approx-\frac{R}{\lambda_{i}}
$$

$$
\frac{\partial R}{\partial R_{L}^{\prime}}=\frac{R}{R_{2}}=h_{0}
$$

For oach plate, wo calculato mean value of K from the 18 loast squares valuos availablo。 Similarly wo obtain a moan valuo for h_{0} Tho values of λ_{i}^{\prime} aro known and the values of $\left(h_{1}^{p}-h_{0}\right)$ are calculatod from tho observed $h_{1}^{\text {i }}$ and the mean h_{0} for the plate.

Wo assume that $\sigma_{i, 1}^{\prime \prime}$ the same for all calibration wave longths. The value of j_{2} used hore is . 02 x . u_{0} This is the largest of all tho σ_{i} of tho calibration wevo lengths usod in these experiments. This assumption simplifios the calculations considorably and introduces vory littlo orror into tho calculations of σ_{R}. Any error so introducod is on the conservative side. By inspoction of the data, we chose reasonable value for $\sigma_{h i} \$ 0.01 \mathrm{~mm}$. Wo also asume that all mosuroments havo the samo doviation. This assumption further simplifies the calculations and any orror introducod is on tho conservative side.

We now havo numerical valuos for each torm noedod to calculate σ_{F}. The valuo of σ_{G} calculated from data obtained from the dysprosirm plato Was. 40 mm . Using completoly analogous approximations for $\frac{d h_{0}}{d A_{i}}$ and $\frac{\partial h_{i}}{\partial h_{i}}$ and tho samo value for σ_{i} and $\sigma_{\lambda}^{\prime}$, wo found $\sigma_{i}=03 \mathrm{~mm}$.

In order to further check the validity of these approximations, wo calculated the partial dorivativos

$$
\frac{\partial R}{\partial \lambda_{i}^{2}}, \frac{\partial P}{\partial h_{i}}: \frac{\partial h_{0}}{\partial \lambda_{2}} \text {, xa } \frac{\partial h_{0}}{\partial h_{i}^{\prime}}
$$

by differontieting the loast quares formules for R and h_{0} oquations (1) and (2) and thon ovaluating the resulting oquations for tho dysprosium data. The differentiation resulted in the following equations:

2
1

4

,

\%

$4+\square$

\qquad
$\frac{\partial R}{\partial \lambda_{i}^{\prime}}=\frac{D\left[n n_{1}-\sum_{1=i}^{n} n_{1}\right\}-N\left\{2 n x_{1}-2 \sum_{i=1}^{n} x_{1}\right.}{2 d D^{2}}$
whore D : denominator of equation (I)
N = numerator of quation (1)
n: number of calibration ines

$$
\frac{\partial R}{\partial h_{1}}=\frac{n x_{1}-\sum_{i=1}^{\infty} x_{1}}{D}
$$

$$
\frac{\partial h_{0}}{\partial \lambda_{1}}=D\left\{2 x_{1} \sum_{i=1}^{n} n_{1}^{D}-\sum_{i=1}^{n} n 1 x_{1}-n_{1} \sum_{i=1}^{n} x_{i}\right\}=N^{1}\left\{2 n x_{1}-2 \sum_{i=1}^{n} x_{1}\right.
$$

$2 a D^{2}$
where N° - numerator of equation (2)

$$
\frac{\partial h_{0}}{\partial h_{1}}=\frac{\sum_{i=1}^{2} x_{1}{ }^{2}-x_{1} \sum_{i=1}^{i} x_{1}}{D}
$$

As an example of the agremont between the approximate method and the love formulas from least squares, the following values for $\frac{\partial R}{\partial \lambda_{i}}$ orem:

Least Squares
 Differentiation

$\frac{\partial R}{\partial \lambda_{1}^{\prime}}$
$\frac{\partial R}{\partial \lambda_{z}}$
$\frac{\partial R}{\partial \lambda_{3}^{\prime}}$
12.15
10.28
10.7

Approximate

 RelationOther derivatives wore similarly evaluated with the same degree -f agreement with the eppreximat method

$$
\text { By inspection of the calculate values for } R_{0} \text { and }\left(h_{1}^{p}-h_{0}\right) \text {, }
$$

wo found that R and (h_{1} - h_{0}) were nearly the same for all plates.

nenim

With these generalizations and with the above approximations show to be reasonable, it follows that $\left(\frac{\sigma \bar{R}}{R}\right)^{2}$ and $\left(\sigma_{h o}\right)^{2}$ need be calculated only once for a given sot of calibration lines used with a given spectrograph. We have used $\left(\frac{\sigma_{\mathrm{R}}}{\mathrm{R}}\right)^{2}=4 \times 10^{-8}$ and $\left(\sigma_{\mathrm{h} \bullet}\right)^{2}=9 \times 10^{-4} \mathrm{~mm}^{2}$. Therefore, $\left(\sigma_{\mathrm{hi}}\right)^{2}+\left(\sigma_{\mathrm{h}_{0}}\right)^{2}=10 \times 10^{-4} \mathrm{~mm}^{2}$.
These values introduced into equation (4) give

$$
\begin{equation*}
\sigma\left(\lambda_{1}\right)=\sqrt{\lambda_{i}^{2}\left[\frac{10 \times 10^{-4}}{\left(h_{1}-h_{0}\right)^{2}}+4 \times 10^{-8}\right]} \tag{7}
\end{equation*}
$$

where $\left(h_{i}-h_{0}\right)$ is in mm.
Finally, the conversion of, $\sigma\left(\lambda_{l}\right)$ to $\sigma\left(E_{i}\right)$ may bo made by keeping tho fractional deviations equal, io. $\frac{\sigma\left(\lambda_{i}\right)}{\lambda_{i}}=\frac{\sigma\left(E_{i}\right)}{E_{i}}$.

This is true because the fractional deviation of the conversion constant is so small.

18

$$
-\quad \text { - }
$$

-

Hen:
int iten
419
\longrightarrow

SECTION VI - RESULTS

Table II contains the wave lengths and onergies of all gamma rays measured during the conduct of this thesis. A total of seventeon different gamma rays, omitted from five different -dd Z isetopes, from $L=61$ t. $Z=71$, were measured.

Of the seventeon onergios included, fifteen have beon previously measured by crystal spectrometer metheds, either in the Mark I geometry at Cal. Tech. (roforences g and h of Tabl• II) -r Swedon (a, b), or in the Cauchois geometry at Livermore (c). Agreoment with these earlier precision measurements is considered quite satisfactery.

Twe of the energies determined, these of the 91 kov line in Pm^{147} and the 97 kev line in Eu^{153}, have been determined here by the procise crystal methed for the first time. The provious detorminations of these onergies has boen by scintillation counter or beta spectrometer metheds. The present methed impreves the accuracy te which these values are known by one ordor of magnitude. The 97 kev line of Eu ${ }^{153}$ deserves special comment in that this particular gamma ray has boon roportod by only one group of investigaters, Church and Geldhaber in reforence d of Table II. There it is reperted that the decay of Gd ${ }^{153}$ yiolds transitions of 69.4, 97.3 and 103.1 kev in Eu ${ }^{153}$. Only the first and last of these are reperted te have been soen fellowing the decay of Sm^{153}. The 97 kev line was obtained in the present case from the docay of Sm^{153}. It is alse noted that ether articles, references a, $b, 0, f$, and j of Table II, which report observed gamma transitions characteristic of the decay of Sm^{153} have failed te -bservo this 97 kev gamma ray.

TABLE II
Measured Wavelengths and Energies of Gamma Rays

Parent Isotope	$\left\lvert\, \begin{gathered} \text { Daughter } \\ \text { Product } \\ \text { (Gamma } \\ \text { Emittor }) \end{gathered}\right.$	Wavelengths in Siegbahn X units	Energy in Kev	t previous values of energy	Reference
$N a^{147}$	Pm^{147}	$135.88 \pm .05$	$91.05 \pm .04$	91.3	e^{*}
Sm^{153}	$E u^{153}$	$\begin{aligned} & 177.60 \pm .05 \\ & 127.00 \pm .05 \\ & 119.92 \pm .05 \end{aligned}$	$\begin{array}{cc} 69.66 & \pm .02 \\ 97.42 & \pm .04 \\ 103.17 & \pm .04 \end{array}$	$\begin{aligned} & 69.66 \\ & 97.3 \\ & 103.27 \pm .02 \end{aligned}$	b d^{*} a
$D y^{165}$	Ho^{165}	$130.75 \pm .05$	$94.63 \pm .04$	$94.793 \pm .007$ $94.70 \pm .02$	a c
$E r^{171}$	Tm^{171}	$\begin{array}{r} 110.86 \pm .04 \\ 99.79 \pm .04 \\ 40.34 \pm .04 \end{array}$	$\begin{aligned} & 111.61 \pm .04 \\ & 123.98 \pm .06 \\ & 306.70 \pm .30 \end{aligned}$	$\begin{aligned} & 111.63 \pm .02 \\ & 124.03 \pm .03 \\ & 308.37 \pm .15 \end{aligned}$	h h h
Y^{169}	Tm^{169}	$\begin{aligned} & 196.05 \pm .05 \\ & 112.72 \pm .04 \\ & 94.79 \pm .04 \end{aligned}$	$\begin{gathered} 63.11 \pm .02 \\ 109.77 \pm .04 \\ 130.53 \pm .06 \end{gathered}$	$\begin{aligned} & 63.12 \pm .01 \\ & 109.78 \pm .02 \\ & 109.77 \pm .03 \\ & 130.53 \pm .03 \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \\ & \mathrm{c} \\ & \mathrm{~g} \end{aligned}$

?

Parent Isotope	TABLE II (cont. ${ }^{\text {c }}$				
	Daughter Product (Gamma Emittor)	Wavelengths in Siegbahn X units	$\begin{gathered} \text { Energy in } \\ \text { Kev } \end{gathered}$	Best previous values of energy	Reference
Yb^{169}	Tm 169	$\begin{aligned} & 69.79 \pm .04 \\ & 62.49 \pm .04 \end{aligned}$	$177.27 \pm .10$ $197.99 \pm .13$	$177.24 \pm .05$ $197.97 \pm .06$	$\begin{aligned} & g \\ & g \end{aligned}$
Yb^{175}	$\underline{L u}{ }^{275}$	$\begin{array}{r} 108.74 \pm .04 \\ 85.40 \pm .04 \\ 43.83 \pm .04 \\ 31.31 \pm .04 \end{array}$	$\begin{aligned} & 113.78 \pm .04 \\ & 144.88 \pm .07 \\ & 282.30 \pm .26 \\ & 395.1 \pm .4 \end{aligned}$	$\begin{aligned} & 113.81 \pm .02 \\ & 113.79 \pm .04 \\ & 144.85 \pm .03 \\ & 282.57 \pm .13 \\ & 396.1 \pm .3 \end{aligned}$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{c} \\ & \mathrm{~g} \\ & \mathrm{~g} \\ & \mathrm{~g} \end{aligned}$

(

REFERENCES FOR TABLE II - RESULTS

a) B, Andersson, Proc. Phys. Soc. (Iondon) 69A, 415 (1956)
b) 0. Bockman (to be published), queted in D. Strominger, J. M. Hollandor and G. T. Soaborg, Rev. Mod. thy. 30, 585 (1958)
c) E. L. Chupp, J. W. M. DuMond, F. J. Gordon, R. C. Jopson and Hans Mark, Phys. Rov. 112, 518 (1958)
d) E. L. Church and M. Geldhabor, Phys. Rev. 95, 626A (1954)
©) J. M. Cork, M. K. Brice, R. G. Helmer and R. M. Wôds, Jro, Bull. Am. Yhys. Soc. Sor. II, 3, 64 (1958)
f) R. L. Grahom and J. Walker, Phys. Rev. 94, 794A (1954)
g) E. N. Hatch, F. Beohm, P. Marmier and J. W. M. DúMond, Phys. Rev. 104, 745 (1956)
h) E. N. Harch and F. Beohm, Phys. Rev. 108, 113 (1957)

1) Phys. Rev. 92, 1271 (1953)
j) N. Marty, J. phy. ot radium 16, 458 (1955)
(

SECTION VII - CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The initial objective of the thesis has beon accomplishod. The two meter spectregraph has boen aligned, calibrated and placed in operation. Satisfactory techniques have been developed for the preparation, irradiation, handling and storage of the soveral curie sources used with the spoctregraph. Gamma ray energies calculated from the measured displacement of the spectra along the focal circle show satisfactory agrooment with earlier crystal spectrometer values. This is believed te be adequate confirmation of the successful operation of the spectregraph. Two garma ray onergios have beon measured for the first time te the precision made possible by the bent crystal spoctregraph.

B. RECOMMLIDATIONS

Reconmendations for the continuation of the experimental work and refinoments of techniques may bo summarized as follows: (1) Develop a pregram for the M. I. T. Computational Centor IBM 704 Digital Computor. This program should be based on a least squares determination of R and h where the data is fitted to the form $R x \& h_{0}=y_{9}$ where errers are permitted in both x and $y o$ The ond result of the machine calculations should be the wavelength of the line and its standard deviation, beth calculated by rigorous statistical methods.
(2) Continue the irradiation of samples and their expesure in ordor te extend the range of gamma rays that have beon measured by this precision methed. Special attention should be givon te isetepes not proviøusly analyzed by crystal spectremetors.

$=3 \mathrm{~F}$ 1 2 $2 \cdot 1+\frac{1}{1}+\frac{1}{2}$
 \qquad -
 \qquad lisenemer x_{0} 2 Pr a Thinet ($+\frac{1}{4}$就

 48

 48

 + $=1+=1$

 + $=1+=1$

 $\operatorname{lat-2}+\frac{2}{2}$

 $\operatorname{lat-2}+\frac{2}{2}$
 \qquad
 $\square-2-2$
 \qquad
 \qquad
 15

 $\operatorname{man} \quad 4 \quad \mathrm{~m}$

 $\operatorname{man} \quad 4 \quad \mathrm{~m}$
 $$
r-2+2
$$
 $$
4
$$
 $4 \sqrt{11}$

$1-1+\frac{1}{4}$
Tinen

\qquad
+1

$$
=1
$$

$$
1
$$

$$
-\operatorname{din}
$$

(3) Furthor oxtend the measurement of ganma rays, espocially inte the rogion of short half-lifo isotopes, by sotting up the spoctrograph on the reactor fleor and expesing sourcos which aro being irradiated in one of the throughoperts in the reacter.
(4) Make relative intensity moasuromonts of gamma rays by placing a scintillation crystal bohind a narrow slit arrangemont along the focal circle. The slit arrangement would be used to shiold the crystal from all except one gamm ray line. The crystal would provide the high degreo of energy roselution se dosirable for these measuromonts. Such a sorios of data would provide additional information on branching ratios and docay schomes of the isetopes moasured.
(5) Dosign and manufacture now crystal holdor mounting block which prevides pesitive lecking dovices for the crystal holdor. This can be done by using tapored machined pins which position the crystal holdor in the mounting bleck as woll as socurely fastoning it. This rocomondation is based on the quthors? exporience of having the crystal holdor move rolative to the mounting block during one of the Hartmann tests. During the rest of these experiments, extrome care was used to prevent a recurrence. (6) The film holdor base should bo made lightor and a bottor mothod of socuring it to the frame should be devisod. This could be accomplishod by drilling holes in the baso which are judiciously placed se that thoy match up with the tapped holes in the frame for a variety of film holdor pesitionso

APPENDIX A

Sample Calculations:

In this appondix the calculations for the dyspresium plate will be given as sample of the reutine calculational precedures performed fer each plate. The dyspresium plate was picked for use as a sample bocauso these calculations wore completed first. They alse shorter then most bocause only one unknown line appeared on this plato.

The following table of data for the roforence lines was computed from the λ_{1} s of the reforoncelines, the value of $2 d_{9}$ and the sories oxpansion of the arcsin $\frac{\lambda_{1}}{2 d}$. The first three torms of the sories, $\arcsin x=x * \frac{x^{3^{2 d}}}{2.3} * \frac{1.3 x^{5}}{2.4 .5} \cdots \ldots$ were used. This was sufficiont te calculat the value of the arcsin $\frac{\lambda_{1}}{2 \alpha}$ accurate to six significant figures.

TABLE III

Plate D

$\begin{array}{ll} & \begin{array}{l}\text { Reference } \\ \text { Lines }\end{array} \\ 1 & T_{A}-K \alpha_{I}\end{array}$

$2 \mathrm{~W}=\mathrm{K} \alpha_{2}$	213.382	. 090595	.0907194	. 0082300
$3 W-K \alpha_{1}$	208.571	. 088552	. 0886685	. 0078621
$4 \mathrm{~T}_{A}=68$	182.638	.077542	. 07776200	.0060249
$5 \mathrm{~T}_{\mathrm{A}}=100$	123.599	.052476	.0525002	.0027563
		$\frac{\sum x_{i}}{\left(\sum_{i}\right)^{2}}$. 3095081 .0957953	.0248733 .0994932

 2
anicis of

- 510
$\sim=$

We used the following formulas te determine the least square＂best＂ values for R and h ：（See Section V, B ）

$$
\begin{aligned}
& R=\frac{n \sum_{1=1}^{n} x_{1} x_{1}-\sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}}{n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{1}\right)^{2}} \\
& n_{0}=\frac{\sum_{1=1}^{n} x_{1} \sum_{i=1}^{n} x_{i}^{2}-\sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{1} I_{i}}{n \sum_{i=1} x_{1}^{2}-\left(\sum_{i=1}^{2} x_{1}\right)^{2}}
\end{aligned}
$$

Combination of the appropriate values from Table III gives a value of 00036979 for the comen doneminator of beth equations．
Y_{1} is the value，in millimeters，of the center of the line． Y_{i} is obtained as the average of the loft and right odge comparator readings of a single observer during one traverse of the plate．

Those calculations for R and h ，wore done in tabular form with the indicated operations porformod by dosk calculator． The completed forms are Tables（IV）and（V）。

Next，（ $h-h_{\bullet}$ ）for the unkown line was calculatod for each pass for each observer．Thess were done on a dosk calculator using the values of h from $T a b l$（ V ）and the valuos of h from the raw date shoets．The results were rocerded in tabular form in Table（VI）．As before，the values of Table VI were computed using desk calculater excopt that slide rule accuracy is sufficiont for the quantity $\frac{1}{6}\left(\frac{h \infty h_{0}}{R}\right)^{3}$ ．

The value of $\lambda_{m}=130.746 \mathrm{X}$ 。U．is converted to onergy by $E=\frac{12,372.44}{130.746}$ © 94.63 kev 。

We found the standard deviation from Eq. (7):

$$
\sigma(\lambda)=\sqrt{(130.746)^{2}\left[\frac{10 \times 10^{-4}}{(110.2)^{2}}+4 \times 10^{-8}\right]}= \pm .05 \times . u_{0}
$$

$$
\frac{\sigma(\lambda)}{\lambda}=\frac{.05}{130.746}=\frac{\sigma(E)}{E}
$$

$$
(E)=\frac{.05(94.63)}{130.746}= \pm .036= \pm .04 \mathrm{kov} .
$$

Find values for $H_{*}{ }^{165}$ gamma ray at $94.63 \pm .04 \mathrm{kev}$.

TABLE V (CONTINUED)
a อ7BTd

Reading No.	10	11	12	13	14	15	16	17	18
$X_{i} Y_{i}$									
$\mathrm{X}_{2} \mathrm{Y}_{2}$	9.05430	9.05902	9.05347	3.55607	8.36937	8.08288	2.18560	2.07692	1.96652
$\mathrm{X}_{3} \mathrm{Y}_{3}$	8.48633	8.43677	8.48712	8.00300	7.81839	7.53926	2. 50168	2.39288	2.23471
$X_{4} Y_{4}$	5.72556	5.72556	5.72525	5.29927	5.13844	4.89503	3.89567	3.80214	3.70604
$\mathrm{X}_{5} \mathrm{Y}_{5}$	1.25412	1.25643	1.25548	0.96904	0.85964	0.69274	5.25158	5.18653	5.12095
$\Sigma X_{i} Y_{i}$	24.52031	24.52778	24.52632	22.82738	22,18584	21.20991	13. 83453	13.45847	13.07312
$\sum \mathrm{X}_{\mathrm{i}} \mathrm{Y}_{\mathrm{i}}$	98.0812	98.1111	98.1053	91.3095	98.7434	84.8396	65. 3381	53.8339	52.3125
Numerator(R)	+7.3440	$+7.3426$	7.3442	7.3396	$7.3412+$	7.3437	-7. 3448	-7.3420	7.3388
R	+ 1985.99	$+1935.61+1986.05+1$		+1984.80 +	+1985.23	$85.91-1$	$86.21-19$	85.45	34.59
$\sum x_{i} \sum x_{i} y_{i}$	7.58921	7.59152	7.59107	7.06523	6.86667	6.56462	4. 23188	4.16549	4.04777
Numerator (ho)	-. 29727	- . 29707	- . 29707	- . 31714	-. 32493	-. 33679	. 75552	. 75081	. 74600
	-80.3839	-80.3348	-80.3726	-85.7622	-87.8688	$-91.0760+$	$204.310+2$	203.037	01.736

APPENDIX B

TABLE VII

WAVE LENGTHS OF CALIBRATION LINES

Element	Line	Wave Length in Soigbahn X Units	Reference
Tantalum	$\mathrm{K}_{\alpha_{1}}$	$215.050 \pm .010$	2
Tungston	$\mathrm{K}_{\alpha_{2}}$	$213.382 \pm .010$	2
	${ }_{1} \times_{1}$	$208.571 \pm .010$	2
Tungston -	68 Kev	$182.638 \pm .018$	b
Gamma rays from W^{182}	100 Kev	$123.599 \pm .014$	b

REFERENCES

2) E. Inglostam, Nova Acta Regiae, Sec. Sci. Upsalienis 4, Ne. 5, (1936)
b) Murray, Boohm, Marmier, and DuMond, Phys. Rov. 97, 1007 (1955)
年

APPENDIX C
 BIBLIOGRAFHY

1. Bohr, A., Danske Mat. Fys. Medd. 26, No. 14 (1952)
2. Bohr, A. and B. R. Mottleson, Danske Mat. Fys. Medd. 27, No. 16 (1953)
3. Bragg, W. L., Yroc. Cambridge Phil. Soc. 17, 43 (1912)
4. Cauchois, Yo, Comptos Rendus 195, 1479 (1932)
5. Cauchois, Yo, "Extension de la spectrographio des Rayons X", Ann. Phys. 1,215 (1934)
6. Cohen, E. R., J. W. M. DuMond, T. W. Layton, and J. S. Rollett, "Analysis of Variance of the 1952 Data on the Atomic Constants and a new Adjustment, 1955". Rev. Mod. Phys. 27, 363 (1955)
7. Chupp, E. L., A. F. Clark, J. W. M. DuMond, F. J. Gordon, and Hans Mark, "Precision Determination of the Low-Iying Energy Levels of $W^{182}, W^{183}, W^{184}$, and W^{186}. Phys.-Rev. 107, 745 (1957)
8. Chupp, E. L., J. W. M. DuMond, F. J. Gordon, K. C. Jopson, and Hans Mark, "Precision Determination of Some Energy Levels in $\mathrm{Fe}{ }^{57}$, Zn 67 , and प'99", Yhys. Rev. 109, 2036 (1958)
9. Chupp, E. Io, J. W. M. DuMiond, F. J. Gordon, K. C. Jopson, and Hans Mark, "Procision Determination of Nuclear mergy Levels in Heavy. Elements", Yhys. Rev. 112, 518 (1958)
10. Davisson, C. Mo, and K. D. Evans, "Gamma Ray Absorption Coefficients", Rev. Mod. Phys. 24, ,79 (1952)
11. DuMond, J. W. M., "High Resolving Power, Curved-Crystal Focusing Spectrometer for Short Wave-Length X-Rays and Gomma-Rays", Rev. Sci. Instr. 18, 626 (1947)
12. DuMond, J. W. M., "Crystal Diffraction Spectroscopy of Nuclear Gamma Rays". in "Beta and Gamma Ray Spectroscopy", Kai Siegbahn, ed., Interscience Publishers, New York, 1955
13. DuMond, J. W. M., "Spectroscopy of Nuclear Gamma Rays by Direct Crystal Diffraction Methods", in "Ergebnisse der Exakten Naturwissenschaften", Springer-Verlag, Berlin, 1955
14. DuMond, J.W. M. and E. R. Cohen, "Least Squares Adjustment of the Atomic Constants", Rev. Mod. Phys. 25, 691 (1953)

15. Dukond, J. W. M. and H. A. Kirkpatrick, "The Multiple Crystal X-Ray Spectrograph", Rev. Sci. Instr. I, 88 (1930)
16. DuMond, J. W. M., D. A. Lind, and E. R. Cohen, "Precision Method of Generating Circalar Cylindrical Surfaces of Large Radius of Curvature for Use in the Curved-Crystal Spectrometer", Rev. Sci. Instr. 18, 617 (1947)
17. Friedrich, Knipping, and Laue, "Bayer Akad. Wiss.", 1912; Le Radium, 10, 47 (1913)
18. Goldschmidt-Clermont, Annual Reviews of Nuclear Science, Vol. 3, Annual Review, Inc., Palo Alto, Calif., 1953
19. Johann, H. H., Z. Yhysik 69, 185 (1931)
20. Johansson, T., Z. Physik 82, 507 (1933)
21. Lind, D. A., W. J. West, and J. W. M. DuMond, "X-Ray and Gamma-Ray Reflection Properties from 500 X Units to Nine X Units of Unstressed and of Bent Quartz Plates for Use in the Two-Meter Curved-Crystal Focusing Gamma-Ray Spectrometer", Hhys. Rev. 77, 475 (1950)
22. Richtmyer, F. K., E. H. Kennard, and T. Lauritsen, "Introduction to Modern Hhysics", 5th.ed., McGraw-Hill, New York, 1955
23. Strominger, D., J. M. Hollander, and G. T. Seaborg, "Table of Isotopes", Rev. Mod. Phys. 30, 585 (1958)
24. Thompson, T. J. and T. Cantwell, "MITR: The MIT Research Reactor", Nucleonics 15, 38 (1957)
25. Watson, B. R., W. J. West, D. A. Iind, and J. W. M. DuMond, "Precision Study of the Tungsten K Spectrum Using the 2-Meter Focusing Curved Crystal Spectrometer", Phys. Rev. 75, 505 (1949)
26. Worthing, A. G. and J. Geffner, "Treatment of Experimental Data", John Wiley \& Sons, New York, 1943
年
 DUDLEY KNOX LIBRARY

[^0]: 40

